[1] WEN Binrong, TIAN Xinliang, ZHANG Qi, et al. Wind shear effect induced by the platform pitch motion of a spar-type floating wind turbine[J]. Renewable Energy, 2019, 135:1186-1199. [2] NEJAD A R, KELLER J, YI Guo, et al. Wind turbine drivetrains:State-of-the-art technologies and future development trends[J]. Wind Energy Science Discussions, 2021(1):1-35. [3] CHEN Jiahao, HU Zhiqiang, LIU Geliang, et al. Coupled aero-hydro-servo-elastic methods for floating wind turbines[J]. Renewable Energy, 2019, 130:139-153. [4] LI Xiuhe, ZHU Caichao, FAN Zhixin, et al. Effects of the yaw error and the wind-wave misalignment on the dynamic characteristics of the floating offshore wind turbine[J]. Ocean Engineering, 2020, 199:106960. [5] TAN Jianjun, ZHU Caichao, SONG Chaosheng, et al. Dynamic modeling and analysis of wind turbine drivetrain considering platform motion[J]. Mechanism and Machine Theory, 2019, 140:781-808. [6] QIU Xinghui, HAN Qinkai, CHU Fulei. Dynamic modeling and analysis of the planetary gear under pitching base motion[J]. International Journal of Mechanical Sciences, 2018, 141:31-45. [7] ZHANG Aiqiang, WEI Jing, SHI Lei, et al. Modeling and dynamic response of parallel shaft gear transmission in non-inertial system[J]. Nonlinear Dynamics, 2019, 98(2):997-1017. [8] MO Shuai, ZHANG Yidu, WU Qiong, et al. Research on natural characteristics of double-helical star gearing system for GTF aero-engine[J]. Mechanism and Machine Theory, 2016, 106:166-189. [9] DONG Huiming, ZHANG Chu, BAI Shaoping, et al. Modeling, analysis and testing of load distribution for planetary gear trains with 3D carrier pinhole position errors[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(8):1381-1394. [10] SRIKANTH P, SEKHAR A J M, THEORY M. Wind turbine drive train dynamic characterization using vibration and torque signals[J]. Mechanism and Machine Theory, 2016, 98:2-20. [11] PEETERS J L, VANDEPITTE D, SAS P. Analysis of internal drive train dynamics in a wind turbine[J]. Wind Energy:An International Journal for Progress Applications in Wind Power Conversion Technology, 2006, 9(1-2):141-161. [12] 许华超, 秦大同. 内激励下弹性边界柔性直齿内齿圈振动响应研究[J]. 机械工程学报, 2018, 54(9):161-167. XU Huachao, QIN Datong. Vibration response of flexible spur ring gear with elastic foundation under internal excitation[J]. Journal of mechanical engineering, 2018, 54(9):161-167. [13] ZHU Caichao, CHEN Shuang, LIU Huaiju, et al. Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum[J]. Journal of Mechanical Science and Technology, 2014, 28(6):2033-2040. [14] WANG Shuaishuai, ZHU Caichao, SONG Chaosheng, et al. Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox[J]. Journal of Mechanical Science and Technology, 2017, 31(3):1079-1088. [15] ZHU Caichao, CHEN Shuang, SONG Chaosheng, et al. Dynamic analysis of a megawatt wind turbine drive train[J]. Journal of mechanical science and technology, 2015, 29(5):1913-1919. [16] 刘向阳, 周建星, 章翔峰, 等. 考虑齿圈柔性的风电机组行星传动均载特性与灵敏度分析[J]. 太阳能学报, 2021, 42(7):340-349. LIU Xiangyang, ZHOU Jianxing, ZHANG Xiangfeng, et al. Analysis of load sharing characteristics and sensitivity of planetary transmission of wind turbine considering flexibility of gear ring[J]. Acta Energiae Solaris Sinica, 2021, 42(7):340-349. [17] 许华超秦大同, 刘长钊, 等. 考虑结构柔性的多级齿轮箱变速过程动态特性研究[J]. 振动工程学报, 2021, 34(1):99-107. XU Huachao, QIN Datong, LIU Changzhao, et al. Dynamic characteristics of the multi-stage gearbox considering structural flexibility during the variable speed process[J]. Journal of Vibration Engineering, 2021, 34(1):99-107. [18] DUCHEMIN M, BERLIOZ A, FERRARIS G. Dynamic behavior and stability of a rotor under base excitation[J]. Journal of Vibration and Acoustics, 2006, 128(5):576-585. [19] CHEN Liqiang, WANG Jianjun, HAN Qinkai, et al. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions[J]. Journal of Sound and Vibration, 2017, 404:58-83. [20] HAN Qinkai, CHU Fulei. Dynamic behaviors of a geared rotor system under time-periodic base angular motions[J]. Mechanism and Machine Theory, 2014, 78:1-14. [21] 魏静, 史磊, 张爱强, 等. 飞行环境非惯性系下行星齿轮传动系统耦合动力学建模及其动态特性[J]. 机械工程学报, 2019, 55(23):162-172. WEI Jing, SHI Lei, ZHANG Aiqiang, et al. Modeling and dynamic characteristics of planetary gear transmission in non-inertial system of aerospace environment[J]. Journal of Mechanical Engineering, 2019, 55(23):162-172. [22] XING Yihan, KARIMIRAD M, MOAN T. Modelling and analysis of floating spar-type wind turbine drivetrain[J]. Wind Energy, 2014, 17(4):565-587. [23] GUO Yi, KELLER J, LACAVA W. Planetary gear load sharing of wind turbine drivetrains subjected to non-torque loads[J]. Wind Energy, 2015, 18(4):757-768. [24] PENG T. Coupled multi-body dynamic and vibration analysis of hypoid and bevel geared rotor system[M]. University of Cincinnati, 2010. [25] YI Yuanyuan, QIN Datong, LIU Changzhao. Investigation of electromechanical coupling vibration characteristics of an electric drive multistage gear system[J]. Mechanism and Machine Theory, 2018, 121:446-459. [26] QIU Xinghui, HAN Qinkai, CHU Fulei. Load-sharing characteristics of planetary gear transmission in horizontal axis wind turbines[J]. Mechanism and Machine Theory, 2015, 92:391-406. [27] WANG Qibin, ZHAO Bo, FU Yang, et al. An improved time-varying mesh stiffness model for helical gear pairs considering axial mesh force component[J]. Mechanical Systems and Signal Processing, 2018, 106:413-429. [28] TAN Jianjun, ZHU Caichao, SONG Chaosheng, et al. Study on the dynamic modeling and natural characteristics of wind turbine drivetrain considering electromagnetic stiffness[J]. Mechanism and Machine Theory, 2019, 134:541-561. [29] 杨通强. 斜齿行星传动动力学研究[D]. 天津:天津大学, 2004. YANG Tongqiang. A study on dynamics of helical planetary gear train[D]. Tianjin:Tianjin University, 2004. [30] TAN Jianjun, ZHU Caichao, SONG Chaosheng, et al. Effects of flexibility and suspension configuration of main shaft on dynamic characteristics of wind turbine drivetrain[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1):36. |