[1] 赵智远, 赵京东, 赵亮亮, 等. 求解SSRMS构型空间机械臂逆运动学的方法[J]. 机械工程学报, 2022, 58(3):21-35. ZHAO Zhiyuan, ZHAO Jingdong, ZHAO Liangliang, et al. Method for solving the inverse kinematics of SSRMS-type space manipulators[J]. Journal of Mechanical Engineering, 2022, 58(3):21-35. [2] DANTAM N T. Robust and efficient forward, differential, and inverse kinematics using dual quaternions[J]. The International Journal of Robotics Research, 2020, 40(10-11):1087-1105. [3] Beeson P, Ames B. TRAC-IK:An open-source library for improved solving of generic inverse kinematics[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul, Korea:IEEE, November, 2015:928-935. [4] Angeles J. Fundamentals of robotic mechanical systems[M]. New York:Springer-Verlag, 2002. [5] Manocha D, Canny J F. Efficient inverse kinematics for general 6R manipulators[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5):648-657. [6] Kucuk S, Bingul Z. Inverse kinematics solutions for industrial robot manipulators with offset wrists[J]. Applied Mathematical Modelling, 2014, 38(7-8):1983-1999. [7] 刘亚军, 黄田. 6R操作臂逆运动学分析与轨迹规划[J]. 机械工程学报, 2012, 48(3):9-15. LIU Yajun, HUANG Tian. Inverse kinematics and trajectory planning of 6R serial manipulators[J]. Journal of Mechanical Engineering, 2012, 48(3):9-15. [8] 林阳, 赵欢, 丁汉. 基于多种群遗传算法的一般机器人逆运动学求解[J]. 机械工程学报, 2017, 53(3):1-8. LIN Yang, ZHAO Huan, DING Han. Solution of inverse kinematics for general robot manipulators based on multiple population genetic algorithm[J]. Journal of mechanical engineering, 2017, 53(3):1-8. [9] 吉阳珍, 侯力, 罗岚, 等. 基于组合优化算法的6R机器人逆运动学求解[J]. 中国机械工程, 2021, 32(10):1222-1232. JI Yangzhen, HOU Li, LUO Lan, et al. Solution of inverse kinematics for 6R robots based on combinatorial optimization algorithm[J]. China Mechanical Engineering, 2021, 32(10):1222-1232. [10] 冷舒, 吴克, 居鹤华. 机械臂运动学建模及解算方法综述[J]. 宇航学报, 2019, 40(11):1262-1273. LENG Shu, WU Ke, JU Hehua. Overview of manipulator kinematics modelling and solving method[J]. Journal of Astronautics, 2019, 40(11):1262-1273. [11] Bernstein D S. Matrix mathematics[M]. Princeton University Press, Princeton, 2005. [12] Buchberger B. Gröbner bases:An algorithmic method in polynomial ideal theory[M]. Multidimensional Systems Theory. Dordrecht:Reidel, 1984. [13] Buchberger B. Gröbner bases and system theory[J]. Muti-dimensional System Signal Process, 2001, 12(3-4):223-251. [14] 陆佩忠, 邹艳. 两元齐次多项式理想的Gröbner基的快速计算[J]. 中国科学(E辑:信息科学), 2008(8):1169-1178. Lu Peizhong, Zou Yan. Fast calculation of Gröbner basis of bivariate homogeneous polynomial ideal[J]. Science in China Ser. E Information Science, 2008(8):1169-1178. [15] 杭鲁滨, 王彦, 杨廷力. 基于Gröbner基法的一般串联6R机器人机构逆运动学分析[J]. 上海交通大学学报, 2004, 38(6):853-856. Hang Lubin, Wang Yan, Yang Tingli. Inverse kinematic analysis of the general 6R serial robot mechanism based on Gröbner basis[J]. Journal of Shanghai Jiaotong University, 2004, 38(6):853-856. [16] Chtcherba A D, Kapur D, Minimair M. Cayley-Dixon construction of resultants of multi-univariate composed polynomials:TR-CS-2005-15[R]. New Mexico:University of New Mexico, Department of Computer Science, 2005. [17] 符红光, 赵世忠. 构造一般Dixon结式矩阵的快速算法[J]. 中国科学(A辑:数学), 2005, 35(1):1-14. Fu Hongguang, Zhao Shizhong. Rapid algorithm to formulate Dixon resultant matrices[J]. Science in China Ser. A Mathematics, 2005, 35(1):1-14. [18] Vaitheeswaran P, Subbarayan G. Improved dixon resultant for generating signed algebraic level sets and algebraic boolean operations on closed parametric surfaces[J]. Computer-Aided Design, 2021, 135:103004. [19] Paláncz B, Zaletnyik P, Awange J L, et al. Dixon resultant's solution of systems of geodetic polynomial equations[J]. Journal of Geodesy, 2008, 82(8):505-511. [20] Nakos G, Williams R. Elimination with the Dixon resultant[J]. Mathematical Education Research, 1997, 6:11-21. [21] Dixon A L. The eliminant of three quantics in two independent variables[J]. Proceedings in London Mathematical Society, 1908, 6:468-478. [22] Kapur D, Saxena T, Yang L. Algebraic and geometric reasoning using Dixon resultants[C]//ACM ISSAC 94. Oxford:ACM, July, 1994, 99-107. [23] Zhang S, Karimi S, Shamshirband S, et al. Optimization algorithm for reduction the size of Dixon resultant matrix:A case study on mechanical application[J]. Computers, Materials & Continua, 2019, 58(2):567-583. [24] 陈菲菲, 居鹤华, 余萌, 等. 一种分析四元数及其在6R机械臂逆运动学中的应用[J]. 机械工程学报, 2022, 58(9):31-40. CHEN Feifei, JU Hehua, YU Meng, et al. An analytical quaternion and its applications to inverse kinematics of 6R manipulators[J]. Journal of Mechanical Engineering, 2022, 58(9):31-40. [25] Marić F, Giamou M, Hall A W, et al. Riemannian optimization for distance-geometric inverse kinematics[J]. IEEE Transactions on Robotics, 2021, 12:1-20. [26] 居鹤华, 石宝钱. 基于轴不变量的通用3R机械臂逆解建模与解算方法:中国, CN108959828B[P]. 2019-12-06. JU Hehua, SHI Baoqian. An axis-invariant based inverse kinematics modeling and solution method for general 3R manipulators:China, CN108959828B[P]. 2019-12-06. [27] 居鹤华. 基于轴不变量的通用6R机械臂逆解建模与解算方法:中国:CN109015641B[P]. 2019-12-03. JU Hehua. An axis-invariant based inverse kinematics modeling and solution method for general 6R manipulators:China, CN109015641B[P]. 2019-12-03. [28] LI J, YU H, SHEN N, et al. A novel inverse kinematics method for 6-DOF robots with non-spherical wrist[J]. Mechanism and Machine Theory, 2021, 157:104180. |