[1] ANGELES J. Fundamentals of robotic mechanical systems [M]. New York: Springer-Verlag, 2002. [2] DENAVIT J, HARTENBERG R S. A kinematic notation for lower pair mechanisms based on matrices[J]. ASME Journal of Applied Mechanics, 1995, 22: 215-221. [3] RAGHAVAN M, ROTH B. Kinematic analysis of the 6R manipulator of general geometry[C]// Proceedings of the 5th International Symposium on Robotics Research. Tokyo: MIT Press, 1991: 263-269. [4] RAGHAVAN M, ROTH B. Inverse kinematics of the general 6R manipulator and related linkages[J]. Journal of Mechanical Design, 1993, 115(3): 502-508. [5] MANOCHA D, CANNY J F. Efficient inverse kinematics for general 6R manipulators[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 648-657. [6] LIU Songguo, ZHU Shiqiang, WANG Xuanyin. Real-time and high-accurate inverse kinematics algorithm for general 6R robots based on matrix decomposition[J]. Journal of Mechanical Engineering, 2008, 44(11): 304-309. 刘松国, 朱世强, 王宣银. 基于矩阵分解的一般6R机器人实时高精度逆运动学算法[J]. 机械工程学报, 2008, 44(11): 304-309. [7] HE Bing, CHE Linxian, LIU Chusheng, et al. Complex differential evolution algorithm for inverse kinematics problem of spatial 6R robot manipulators[J]. Journal of Mechanical Engineering, 2014, 50(15): 45-52. 何兵, 车林仙, 刘初升, 等. 空间6R机械臂位置逆解的复合形差分进化算法[J]. 机械工程学报, 2014, 50(15): 45-52. [8] SELIG J M. Geometric fundamentals of robotics[M]. Berlin: Springer-Verlag, 2005. [9] MCCARTHY J M, SOH G S. Geometric design of linkages[M]. New York: Springer, 2011, 136-158. [10] CRAIG, JOHN J. Introduction to robotics: Mechanics and control[M]. NewYork: Pearson Education Inc., 1955. [11] HUO X, YANG S, LIAN B, et al. A survey of mathematical tools in topology and performance integrated modeling and design of robotic mechanism[J]. Chinese Journal of Mechanical Engineering, 2020, 33(4): 38-52. [12] FEDERICO T. Approaching dual quaternions from matrix algebra[J]. IEEE Transactions on Robotics, 2014, 30(5): 1037-1048. [13] HAMILTION W R. Elements of quaternions[M]. New York: Chelsea Publishing Co., 1901. [14] GOLDSTEIN H. Classical mechanics[M]. MA: Addison-Wesley, 1980. [15] IAGLOM I M. Complex numbers in geometry[M]. Boston: Academic Press, 1968. [16] BITO J F, EROSS G, TAR J K. A new method for solving kinematic tasks for robots[J]. Engineering Applications of Artificial Intelligence, 1991, 4(6): 459-465. [17] YANG A T, FREUDENSTEIN F. Application of dual-number quaternion algebra to the analysis of spatial mechanisms[J]. Journal of Applied Mechanics, 1964. 31(2): 300-308. [18] MCCARTHY J M. An introduction to theoretical kinematics[M]. Cambridge: MIT Press, 1990. [19] BOTTEMA O, ROTH B. Theoretical kinematics[M]. Amsterdam: North-Holland, 1979. [20] VELDKAMP G. On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics[J]. Mechanism and Machine Theory, 1976, 11(2): 141-156. [21] ANGELES J. The application of dual algebra to kinematic analysis[M]. Berlin: Springer-Verlag, 1998. [22] QIAO S, LIAO Q, WEI S. Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions[J]. Mechanism and Machine Theory, 2010, 45(2): 193-199. [23] NI Zhensong, LIAO Qizheng, WEI Shimin, et al. Dual four element method for inverse kinematics analysis of spatial 6R manipulator[J]. Journal of mechanical engineering, 2009, 45(11): 25-29. 倪振松, 廖启征, 魏世民, 等. 空间6R机器人位置反解的对偶四元数法[J]. 机械工程学报, 2009, 45(11): 25-29. [24] ZHAO F, GUO S, SU H, et al. Design of self-reconfigurable multiarm robot mechanism based on deployable kinematic chains[J]. Chinese Journal of Mechanical Engineering, 2020, 33(5): 44-60. [25] QIAO Guifang, SUN Dalin, SONG Guangming, et al. A rapid coordinate transformation method for serial robot calibration system[J]. Journal of Mechanical Engineering, 2020, 56(14): 1-8. 乔贵方, 孙大林, 宋光明, 等. 串联机器人标定系统的坐标系快速转换方法[J]. 机械工程学报, 2020, 56(14): 1-8. [26] ZHOU Xing, HUANG Shifeng, ZHU Zhihong. TCP calibration model research and algorithm improvement of six joint industrial robot[J]. Journal of Mechanical Engineering, 2019, 55(11): 186-196. 周星, 黄石峰, 朱志红. 六关节工业机器人TCP标定模型研究与算法改进[J]. 机械工程学报, 2019, 55(11): 186-196. [27] JU Hehua. An axis-invariant based inverse kinematics modelling and solution method for multi-axis manipulators: China. CN108942942B[P]. 2020-01-07. 居鹤华. 一种基于轴不变量的多轴机器人逆运动学建模与解算方法: CN108942942B[P]. 2020-01-07. |