• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (3): 73-79.doi: 10.3901/JME.2020.03.073

• 机械动力学 • 上一篇    下一篇

基于TMD-HMD的海上浮式风力机主被动综合振动控制

贺尓铭, 熊波, 杨佳佳   

  1. 西北工业大学航空学院 西安 710072
  • 收稿日期:2019-07-30 修回日期:2019-12-29 出版日期:2020-02-05 发布日期:2020-04-09
  • 通讯作者: 熊波(通信作者),男,1995年出生,硕士。主要研究方向为结构动力学及振动控制。E-mail:1278710613@qq.com
  • 作者简介:贺尔铭,男,1964年出生,博士,教授。主要研究方向为结构动力学及振动控制。E-mail:heerming@nwpu.edu.cn;杨佳佳,男,1989年出生,博士研究生。主要研究方向为结构动力学及振动控制。E-mail:yang212522@163.com
  • 基金资助:
    国家自然科学基金资助项目(51675426)。

Study on Active-passive Integrated Vibration Control of Offshore Floating Wind Turbine Based on TMD-HMD

HE Erming, XIONG Bo, YANG Jiajia   

  1. College of Aeronautics, Northwest Polytechnic University, Xi'an 710072
  • Received:2019-07-30 Revised:2019-12-29 Online:2020-02-05 Published:2020-04-09

摘要: 在恶劣的海洋环境中,随机风浪载荷使风机平台和塔顶产生较大的振动位移,严重威胁风机结构的安全性。为此提出TMD-HMD主被动综合控制方法对海上浮式风力机进行振动控制,在Spar式浮动风力机平台内放置多个调谐质量阻尼器,构成多重调谐质量阻尼器(Multiple tuned mass damper,MTMD),在机舱内放置一个调谐质量阻尼器(Tuned mass damper,TMD)。首先基于欧拉-拉格朗日能量方程建立了风机系统11自由度空间动力学简化模型,利用Levenberg-Marquardt算法估计平台的刚度和阻尼参数,并通过与美国可再生实验室开发的FAST全耦合模型对比验证了模型的正确性;然后采用Van-Nguyen Dinh的方法优化了TMD的参数;接着在机舱TMD上施加主动控制力形成混合质量阻尼器(Hybrid mass damper,HMD),与平台TMD共同构成TMD-HMD综合振动控制系统,其中主动控制力通过线性二次型控制(Linear quadratic regulator,LQR)获得,LQR中的权重系数Q和R采用穷举法优化;最后在风浪联合载荷下分别研究了TMD被动控制和TMD-HMD主被动综合控制对风机动态响应的抑制效果。结果表明:与单独TMD被动控制相比,TMD-HMD主被动综合控制对风机平台纵摇角和塔顶纵向位移的抑制效果分别提高了约38%和20%,使其振动能量分别减少了72%和40%。

关键词: 海上浮式风力机, MTMD, HMD, LQR, 振动控制, 动态响应, 主被动综合控制

Abstract: In harsh marine environment, random wind and wave loads may cause violent vibrations and large displacements of platform and tower top of offshore floating wind turbine, which seriously threatens the structural safety and stability of floating wind turbine. Therefore, an active-passive integrated vibration control strategy for floating wind turbine is proposed,in which,multiple tuned mass dampers (MTMD) are placed in the floating platform of Spar wind turbine and a tuned mass damper (TMD) is placed inside the nacelle at tower top. Firstly, a simplified 11-DOF space dynamics model of floating wind turbine is established based on Euler-Lagrange equation,in which the floating platform is considered a rigid body, the tower is considered an elastomer, and the cabin and TMD are considered as lumped mass points. The stiffness and damping parameters of the platform are estimated by Levenberg-Marquardt algorithm and the correctness of the model is verified by comparing with the FAST model. Then the parameters of TMD are optimized by using Van-Nguyen Dinh's method. Next, the hybrid mass damper (HMD) is formed by exerting active control force on the nacelle TMD and constituting TMD-HMD with the platform TMD, in which the active controller is designed by the linear quadratic regulator (LQR) method and its weight coefficients Q and R of LQR are optimized by the exhaustive method. Finally, the vibration suppression effects of TMD passive control only and TMD-HMD active-passive integrated control on dynamic responses of floating wind turbine are simulated respectively under typical wind and wave loads. The simulation results show:compared with TMD passive control, the vibration suppression effect of TMD-HMD active-passive integrated control increases by about 38% for the platform pitch angle and about 20% for the tower-top longitudinal displacement respectively, and the vibration energy is reduced by 72% and 40% respectively.

Key words: offshore floating wind turbine, MTMD, HMD, LQR, vibration suppression, dynamic response, active-passive integrated control

中图分类号: