机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 34-63.doi: 10.3901/JME.2023.20.034
黄庆学1,2,3
收稿日期:
2023-07-31
修回日期:
2023-09-22
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
黄庆学(通信作者),男,1960年出生,教授,博士研究生导师,中国工程院院士。主要研究方向为大型轧钢设备设计方法、技术开发及工程化。E-mail:hqx@tyut.edu.cn
基金资助:
HUANG Qingxue1,2,3
Received:
2023-07-31
Revised:
2023-09-22
Online:
2023-10-20
Published:
2023-12-08
摘要: 高品质钢铁板带是航空航天、武器装备、核电能源、轨道交通、石油化工、建筑桥梁等国家重大工程的基础材料,其生产装备与制备技术代表着工业基础水平,是支撑我国经济发展的中流砥柱和维护国防安全的重要保障。面向未来国家经济主战场与战略必争领域,以高品质钢铁板带为对象,对宽厚板轧制、热连轧、冷连轧等具有代表性的生产过程进行关键装备与技术研究进展综述,将国家需求和创新引领作为主线,提出以“极限化、复合化、智能化、绿色化”为导向的技术路线和发展方向,进一步健全创新体系、攻克关键技术、突破关键材料、提高产品质量、促进产业升级和降低能源消耗,以期对钢铁产业绿色可持续发展有所裨益。
中图分类号:
黄庆学. 高品质钢铁板带轧制关键装备与技术研究进展[J]. 机械工程学报, 2023, 59(20): 34-63.
HUANG Qingxue. Research Progress on Key Equipment and Technology of High Quality Steel Plate and Strip Rolling[J]. Journal of Mechanical Engineering, 2023, 59(20): 34-63.
[1] 康永林. “十三五”中国轧钢技术进步及展望[J]. 钢铁,2021,56(10):1-15. KANG Yonglin. China steel rolling technology progress in the 13th five-year plan and prospection[J]. Iron and Steel,2021,56(10):1-15. [2] 袁国,王国栋. 高品质钢铁材料轧制加工新技术研究进展及发展趋势[J]. 轧钢,2022,39(6):12-28. YUAN Guo,WANG Guodong. Research progress and development trend of new technology for rolling and processing of high-quality steel materials[J]. Steel Rolling,2022,39(6):12-28. [3] 王国栋,刘相华,王君. 我国中厚板生产设备、工艺技术的发展[J]. 中国冶金,2004(9):3-10. WANG Guodong,LIU Xianghua,WANG Jun. The development of production technologies and equipment for steel plate in China [J]. China Metallurgy,2004(9):3-10. [4] KUMAR P,MAITY K P,DASGUPTA A,et al. Investigation on the genesis of the shape deformation of plates in new plate mill,Rourkela steel plant[J]. Materials Today:Proceedings,2020,33:5582-5585. [5] 王峰,刘方方,郑宇. 国内中厚板生产现状与工艺变化[J]. 云南冶金,2019,48(6):61-65. WANG Feng,LIU Fangfang,ZHENG Yu. The production status and process change on domestic medium plate[J]. Yunnan Metallurgy,2019,48(6):61-65. [6] 李云山. 中厚板轧机市场现状及发展趋势分析[J]. 一重技术,2023(3):54-57. LI Yunshan. Analysis of market status and development trend of plate mill [J]. CFHI Technology,2023(3):54-57. [7] 袁建光,杨敏,贺达伦. 宝钢5 m宽厚板轧机采用的技术及装备[J]. 宝钢技术,2004(2):5-9. YUAN Jianguang,YANG Min,HE Dalun. New technologies and equipment applied to Baosteel 5 m heavy plate mill[J]. Baosteel Technology,2004(2):5-9. [8] 矫志杰,何纯玉,丁敬国,等. 中厚板轧机平面形状控制技术的工业推广应用[J]. 钢铁,2019,54(1):49-55. JIAO Zhijie,HE Chunyu,DING Jingguo,et al. Industrial popularization and application of plan view pattern control technology for plate mill[J]. Iron and Steel,2019,54(1):49-55. [9] 王涛,黄庆学,申光宪,等. 四辊轧机叼板窜辊问题的解析[J]. 钢铁,2017,52(11):81-86. WANG Tao,HUANG Qingxue,SHEN Guangxian,et al. Analysis on problem of plate biting and roll shifting in four-high rolling mill [J]. Iron and Steel,2017,52(11):81-86. [10] 矫志杰,何纯玉,赵忠,等. 中厚板轧制过程高精度智能化控制系统的研发进展与应用[J]. 轧钢,2022,39(6):52-59,66. JIAO Zhijie,HE Chunyu,ZHAO Zhong,et al. Research progress and application of high precision intelligent control system for plate rolling [J]. Steel Rolling,2022,39(6):52-59,66. [11] 黄庆学,申光宪,陈占福,等. 轧机结构设计的新概念[J]. 太原重型机械学院学报,2002(3):241-244,250. HUANG Qingxue,SHEN Guangxian,CHEN Zhanfu,et al. A new design concept for modern rolling mill [J]. Journal of Taiyuan Heavy Machinery Institute,2002(3):241-244,250. [12] 王建梅,黄庆学,丁光正. 轧机油膜轴承润滑理论研究进展[J]. 润滑与密封,2012,37(10):112-116. WANG Jianmei,HUANG Qingxue,DING Guangzheng. Advances on mill oil-film bearing lubrication theory research [J]. Lubrication Engineering,2012,37(10):112-116. [13] 黄庆学,申光宪,陈占福,等. 宝钢2050mm轧机组合轴承载荷特性的边界元法解析及试验研究[J]. 机械工程学报,2001(2):43-47. HUANG Qingxue,SHEN Guangxian,CHEN Zhanfu,et al. Analysis of the distribution the pressure of combined cylindrical roller/taper roller bearings of 2050mm rolling mill used in Baogang by 3D-bemand researching the test[J]. Journal of Mechanical Engineering,2001(2):43-47. [14] 杨霞,鄢闯,黄庆学. 滚动体几何相似条件在轴承边界元法中的应用[J]. 计算力学学报,2015,32(3):404-410. YANG Xia,YAN Chuang,HUANG Qingxue. Application of geometrically similar roller conditions in bearing boundary element method[J]. Chinese Journal of Computational Mechanics,2015,32(3):404-410. [15] 黄庆学,申光宪,李慧剑,等. 大型轧机油膜轴承锥套损伤问题研究[J]. 计算力学学报,2005(3):366-369. HUANG Qingxue,SHEN Guangxian,LI Huijian,et al. Study on contact damage of sleeve of oil-film bearing in rolling mill[J]. Chinese Journal of Computational Mechanics,2005(3):366-369. [16] 黄庆学,王建梅,静大海,等. 油膜轴承锥套过盈装配过程中的压力分布及损伤[J]. 机械工程学报,2006,42(10):102-108. HUANG Qingxue,WANG Jianmei,JING Dahai,et al. Pressure distribution and damages on oil-film bearing sleeve during the process of interference fit[J]. Journal of Mechanical Engineering,2006,42(10):102-108. [17] 黄庆学,李璞,王建梅,等. 宏微观跨尺度下的锥套运行力学机理研究[J]. 机械工程学报,2016,52(14):213-220. HUANG Qingxue,LI Pu,WANG Jianmei,et al. Study on the operating mechanics mechanism of sleeve on macro-micro cross-scale[J]. Journal of Mechanical Engineering,2016,52(14):213-220. [18] 左大为,陈秀敏,申光宪. 轧机压下螺纹副承载特性测试研究[J]. 中国机械工程,2006(3):307-311. ZUO Dawei,CHEN Xiumin,SHEN Guangxian. Experimental study on the load distribution[J]. China Mechanical Engineering,2006(3):307-311. [19] 刘永锋,赵春江,周研,等. 基于热-结构耦合的轧机压下螺纹副强度分析[J]. 机械强度,2017,39(1):214-220. LIU Yongfeng,ZHAO Chunjiang,ZHOU Yan,et al. Analysis on strength for the mill pressure screw pairs based on thermal-structural coupling [J]. Journal of Mechanical Strength,2017,39(1):214-220. [20] 冀俊杰,黄庆学. 轧机压下螺纹副不等厚螺牙面力场的多极边界元解析[J]. 重型机械,2007,5(1):10-14: JI Junjie,HUANG Qingxue. Frictional contact multipole-BEM analysis of traction field in screw pairs[J]. Heavy Machinery,2007,5(1):10-14. [21] 陈秀敏,申光宪,黄庆学. 轧机压下螺纹副回松机理试验和铜螺母螺牙塑扁鼓包分析[J]. 机械工程学报,2007,43(4):168-172. CHEN Xiumin,SHEN Guangxian,HUANG Qingxue. Rapping experiment of rolling mill pressure screw-pairs and plastic bulge of nut teeth analysis[J]. Journal of Mechanical Engineering,2007,43(4):168-172. [22] 刘志芳. 基于曲率积分法的板材矫直理论研究[D]. 重庆:重庆大学,2014. LIU Zhifang. Study of leveling theory based on curvature integration method for plates [D]. Chongqing:Chongqing University,2014. [23] 桂海莲,黄庆学,马立峰,等. 多极边界元法在轧件矫直变形分析中的应用[J]. 重庆大学学报,2010,33(5):95-99. GUI Hailian,HUANG Qingxue,MA Lifeng,et al. Application of FM-BEM in rolled piece deformation analysis of straightening process[J]. Journal of Chongqing University,2010,33(5):95-99. [24] 王效岗,黄庆学,马勤. 中厚板的横向波浪矫直研究[J]. 中国机械工程,2009,20(1):95-98. WANG Xiaogang,HUANG Qingxue,MA Qin. Research on wave leveling model in plate steel [J]. China Mechanical Engineering,2009,20(1):95-98. [25] 桂海莲,李曜,李强,等. 中厚板矫直过程中中性层偏移动态研究[J]. 工程设计学报,2014,21(5):444-448,493. GUI Hailian,LI Yao,LI Qiang,et al. Dynamic research of neutral layer offset of medium plate in straightening process [J]. Chinese Journal of Engineering Design,2014,21(5):444-448,493. [26] 黄庆学,桂海莲,李曜,等. 中厚板矫直过程中的中性层偏移规律分析[J]. 中国科技论文,2015,10(10):1178-1181. HUANG Qingxue,GUI Hailian,LI Yao,et al. Analysis of neutral layer offset in the straightening process of medium plate[J]. China Science Paper,2015,10(10):1178-1181. [27] 王效岗,黄庆学. 不锈钢热处理线用十五辊组合矫直机[J]. 轧钢,2008,25(6):31-33. WANG Xiaogang,HUANG Qingxue. Fifteen-roll combination leveler for stainless steel [J]. Steel Rolling,2008,25(6):31-33. [28] 王效岗,黄庆学,马勤. 十五辊组合矫直机矫直模型研究[J]. 四川大学学报(工程科学版),2008(6):181-185. WANG Xiaogang,HUANG Qingxue,MA Qin. Research of leveling model of fifteen roller combination leveler[J]. Journal of Sichuan University(Engineering Science Edition),2008(6):181-185. [29] 王效岗,马勤,黄庆学. 十五辊组合矫直机辊系优化方法[J]. 西安建筑科技大学学报(自然科学版),2008,40(6):880-884. WANG Xiaogang,MA Qin,HUANG Qingxue. Optimization of the fifteen-roller combination level roller parameter [J]. Journal of Xi’an University of Architecture and Technology(Natural Science Edition),2008,40(6):880-884. [30] 马立峰,黄庆学,冀俊杰. 国内外中厚板滚切剪装备技术现状[J]. 重型机械,2009(2):4-8. MA Lifeng,HUANG Qingxue,JI Junjie. State of plate rolling shear at home and abroad [J]. Heavy Machinery,2009(2):4-8. [31] MURAKAWA M,LU Y. Precision cutting of sheets by means of a new shear based on rolling motion[J]. Journal of Materials Processing Technology,1997,66(1-3):232-239. [32] SUMSKII S N,GRACHEV V G,SOLODOVNIK F S,et al. The role of VNIImetmash in designing and introducing cross-cutting shears for flat-rolled products[J]. Metallurgist,2004,48(3-4):118-121. [33] 黄庆学,马立峰,李进宝,等. 新型滚切剪非对称曲柄机构原理[J]. 机械工程学报,2008(5):119-123. HUANG Qingxue,MA Lifeng,LI Jinbao,et al. Principle of asymmetric crank mechanism of new-type rolling shear[J]. Journal of Mechanical Engineering,2008(5):119-123. [34] 马立峰,黄庆学,李颖,等. 新型钢板滚切剪剪切机构运动学分析[J]. 工程设计学报,2007(5):395-399,403. MA Lifeng,HUANG Qingxue,LI Ying,et al. Analysis on kinematics simulation of new-type steel rolling shear [J]. Journal of Engineering Design,2007(5):395-399,403. [35] 马立峰,黄庆学,李颖,等. 新型滚切剪空间剪切机构优化数学模型的建立及应用[J]. 四川大学学报(工程科学版),2008(2):170-174. MA Lifeng,HUANG Qingxue,LI Ying,et al. Establishment and application of mathematical model on spatial shear mechanism optimization of new-type steel rolling shear[J]. Journal of Sichuan University (Engineering Science Edition),2008(2):170-174. [36] 楚志兵,黄庆学,马立峰,等. 滚切式双边剪连杆机构的动力学仿真及实验研究[J]. 四川大学学报(工程科学版),2011,43(1):247-252. CHU Zhibin,HUANG Qingxue,MA Lifeng,et al. Experimental study and simulation of kinetics on linkage structure of rolling-cut bilateral shear[J]. Journal of Sichuan University (Engineering Science Edition),2011,43(1):247-252. [37] 马立峰,王刚,黄庆学,等. 复合连杆机构复演滚动轨迹的特性研究[J]. 中国机械工程,2013,24(7):877-881. MA Lifeng,WANG Gang,HUANG Qingxue,et al. Research on properties of compound linkage recapitulation rolling trace[J]. China Mechanical Engineering,2013,24(7):877-881. [38] 李玉贵,马立峰,黄庆学. 单轴双偏心非对称负偏置滚切剪研究[J]. 钢铁,2008(2):51-55. LI Yugui,MA Lifeng,HUANG Qingxue,et al. Research on rolling shear with single axle and asymmetric negative offset[J]. Iron and Steel,2008(2):51-55. [39] 马立峰,黄庆学,梁爱生,等. 双轴双偏心定尺滚切剪运动轨迹分析及计算机仿真[J]. 太原重型机械学院学报,2004(2):125-129. MA Lifeng,HUANG Qingxue,LIANG Aisheng,et al. The analysis of moving frace and computer simulation of cutting lengths rolling shear with double shaft and double eccentricity [J]. Journal of Taiyuan Heavy Machinery Institute,2004(2):125-129. [40] 张继东,楚志兵,常瑜,等. 滚切剪最大剪切力计算公式的研究[J]. 重型机械,2010(5):59-62. ZHANG Jidong,CHU Zhibing,CHANG Yu,et al. Formula build and industrial research for maximal shear stress of rolling shears [J]. Heavy Machinery,2010(5):59-62. [41] 韩贺永,乔永杰,李佳,等. 新型液压双边滚切剪机构数学模型的建立与验证[J]. 锻压技术,2018,43(1):124-128,159. HAN Heyong,QIAO Yongjie,LI Jia,et al. Establishing and verification of mathematical model for new hydraulic bilateral rolling shear mechanism [J]. Forging &Stamping Technology,2018,43(1):124-128,159. [42] 何安瑞,杨荃,陈先霖,等. 热带钢轧机线性变凸度工作辊的研制及应用[J]. 机械工程学报,2008,44(11):255-259. HE Anrui,YANG Quan,CHEN Xianlin,et al. Development and application of linearly variable crown work roll in hot strip mills[J]. Journal of Mechanical Engineering,2008,44(11):255-259. [43] DENG J,SUN J,PENG W,et al. Application of neural networks for predicting hot-rolled strip crown[J]. Applied Soft Computing,2019,78:119-131. [44] SONG C,CAO J,XIAO J,et al. Control strategy of multi-stand work roll bending and shifting on the crown for UVC hot rolling mill based on MOGPR approach[J]. Journal of Manufacturing Processes,2023,85:832-843. [45] PRINZ K,STEINBOECK A,KUGI A. Optimization-based feedforward control of the strip thickness profile in hot strip rolling[J]. Journal of Process Control,2018,64:100-111. [46] CAO J G,CHAI X T,LI Y L,et al. Integrated design of roll contours for strip edge drop and crown control in tandem cold rolling mills[J]. Journal of Materials Processing Technology,2018,252:432-439. [47] LI L,XIE H,ZHANG T,et al. Understanding the regulation ability of roll bending on strip shape in a CVC-6 tandem cold mill using a 3D multiple stand FE model[J]. Journal of Manufacturing Processes,2023,101:1013-1031. [48] OMORI S,KAJIWARA T,HINO H,et al. Analysis of rolling load generated by pair crossed rolling mill[J]. Ironmaking & Steelmaking,2004,31(1):71-80. [49] 钱承,孙荣生,张柳柳,等. 冷连轧机组耦合振动模型及影响因素分析[J]. 机械工程学报,2021,57(12):208-216. QIAN Cheng,SUN Rongsheng,ZHANG Liuliu,et al. Coupled vibration model and influencing factors analysis of tandem cold rolling mill[J]. Journal of Mechanical Engineering,2021,57(12):208-216. [50] 宋君,任廷志,魏臻,等. 基于多目标优化的冷连轧工作辊窜辊优化控制[J]. 钢铁,2021,56(9):102-109. SONG Jun,REN Tingzhi,WEI Zhen,et al. Optimal control of work roll shifting in tandem coldrolling mill based on multi objective optimization[J]. Iron and Steel,2021,56(9):102-109. [51] WANG Y L,WANG J K,YIN C H,et al. Multi-objective optimization of rolling schedule for five-stand tandem cold mill[J]. IEEE Access,2020,8:80417-80426. [52] 杨杰,宋健,胡琦,等. 酸洗连轧生产线机组轧制功率建模及工艺参数优化[J]. 中国机械工程,2018,29(19):2371-2376. YANG Jie,SONG Jian,HU Qi,et al. Pickling-cold rolling production line power modeling and process parametersing optimization[J]. China Mechanical Engineering,2018,29(19):2371-2376. [53] HU Y J,SUN J,PENG W,et al. Nash equilibrium-based distributed predictive control strategy for thickness and tension control on tandem cold rolling system[J]. Journal of Process Control,2021,97:92-102. [54] 吴安民,曹苗苗. 1150mm六辊6机架冷连轧机组介绍[C]//2014年全国压力加工设备节能降耗及技术创新研讨会论文集. 中国金属学会,2014:150-152. WU Anmin,CAO Miaomiao. The introduction of 1150mm the 6-h six stands cold strip mill[C]//Proceedings of the 2014 National Symposium on Energy Conservation,Consumption Reduction,and Technological Innovation of Pressure Processing Equipment. The Chinese Society for Metals,2014:150-152. [55] 刘亚星,顾清,钱承,等. 冷轧超高强钢平直度与断面形状前馈控制技术[J]. 中国机械工程,2021,32(24):2981-2988. LIU Yaxing,GU Qing,QIAN Cheng,et al. Feedforward control technology for flatness and sectional shape of ultra high strength steel in six stand tandem cold mill[J]. China Mechanical Engineering,2021,32(24):2981-2988. [56] 刘相华,宋孟,孙祥坤,等. 极薄带轧制研究与应用进展[J]. 机械工程学报,2017,53(10):1-9. LIU Xianghua,SONG Meng,SUN Xiangkun,et al. Advances in research and application of foil rolling[J]. Journal of Mechanical Engineering,2017,53(10):1-9. [57] 赵军,孙静娜,武桐,等. 十八辊轧机板形调控性能仿真分析[J]. 塑性工程学报,2023,30(1):200-207. ZHAO Jun,SUN Jingna,WU Tong,et al. Simulation analysis of shape control performance of eighteen-high rolling mill[J]. Journal of Plasticity Engineering,2023,30(1):200-207. [58] REN Z K,FAN W W,HOU J,et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials,2019,12(11):1-13. [59] BEMPORAD A,BERNARDINI D,CUZZOLA F A,et al. Optimization based automatic flatness control in cold tandem rolling[J]. Journal of Process Control,2010,20(4):396. [60] WANG D C,LIU H M,LIU J. Research and development trend of shape control for cold rolling strip[J]. Chinese Journal of Mechanical Engineering,2017,30(5):1248. [61] 刘宏民,于华鑫,王东城,等. 冷轧带钢板形测控技术的发展状况和关键问题[J]. 钢铁,2022,57(11):22-32. LIU Hongmin,YU Huaxin,WANG Dongcheng,et al. Development state and key problems on flatness measurement and control technology of cold strip steel rolling[J]. Iron and Steel,2022,57(11):22-32. [62] SHU Y F,XIONG C W,FAN S L. Interactive design of intelligent machine vision based on human-computer interaction mode[J]. Microprocessors and Microsystems,2020,75:1-5. [63] LUO Q W,FANG X X,LIU L,et al. Automated visual defect detection for flat steel surface:A Survey[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(3):626-644. [64] LIU W W,FENG Y F,YANG T S,et al. Theoretical and experimental research on the law of flexible roll profile electromagnetic control[J]. Journal of Materials Processing Technology,2018,262:308-318. [65] LIU W,FENG Y F,SUN J N,et al. Analysis of the thermal-mechanical problem in the process of flexible roll profile electromagnetic control[J]. International Journal of Heat and Mass Transfer,2018,120,447-457. [66] 任忠凯,郭雄伟,范婉婉,等. 精密极薄带轧制理论研究进展及展望[J]. 机械工程学报,2020,56(12):73-84. REN Zhongkai,GUO Xiongwei,FAN Wanwan,et al. Research progress and prospects of precision ultra-thin strip rolling theory[J]. Journal of Mechanical Engineering,2020,56(12):73-84. [67] REN Z,XIAO H,LIU X,et al. Experimental and theoretical analysis of roll flattening in the deformation zone for ultra-thin strip rolling[J]. Ironmaking & Steelmaking,2018,45(9):805-812. [68] 王家琪,刘晓,张增强,等. 基于非圆弧理论的精密极薄带轧制力快速预测[J/OL]. [2023-06-05]. 钢铁,https://kns.cnki.net/kcms2/article/abstract?v=wgPKIBh6aVndH1AyG_0a5ItKDa9hE-1zoZybjOnH67vhB4dIh4eIW12yBG4lKuyJjH9v1pxuMbsJtm2DDfKp583JIjaIKsoOKd2KO-se-1x8GfJWEqkB4mLiT9tPJGWI9yN0tAhz8-M=&uniplatform=NZKPT&language=CHS. DOI:10.13228/j.boyuan.issn0449-749x.20230213. WANG Jiaqi,LIU Xiao,ZHANG Zengqiang,et al. Rapid prediction of rolling force of precision thin strip based on noncircular arc theory [J/OL].[2023-06-05]. Iron & Steel,https://kns.cnki.net/kcms2/article/abstract?v=wgPKIBh6aVndH1AyG_0a5ItKDa9hE-1zoZybjOnH67vhB4dIh4eIW12yBG4lKuyJjH9v1pxuMbsJtm2DDfKp583JIjaIKsoOKd2KO-se-1x8GfJWEqkB4mLiT9tPJGWI9yN0tAhz8-M=&uniplatform=NZKPT&language=CHS. DOI:10.13228/j.boyuan.issn0449-749x.20230213. [69] STONE M D. Rolling of thin strip[J]. Iron and Steel Engineer,1953,30(2):61-74. [70] XIAO H,REN Z,LIU X. New mechanism describing the limiting producible thickness in ultra-thin strip rolling[J]. International Journal of Mechanical Sciences,2017,133:788-793. [71] LIU X,XIAO H. Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling[J]. Journal of Materials Processing Technology,2020,278:116537. [72] YUN K H,SHIN T J,HWANG S M. A finite element-based on-line model for the prediction of deformed roll profile in flat rolling[J]. ISIJ International. 2007,47(9):1300-1308. [73] ROARK R J. Formulas for stress and strain[M]. New York:McGraw-Hill,1954. [74] TOZAWA Y,UEDA M. Analysis to obtain the pressure and distribution from the contour of deformed roll[J]. Journal of the Japan Society for Technology of Plasticity. 1970,11(108):29-37. [75] YUAN Z,XIAO H,XIE H. Practice of improving roll deformation theory in strip rolling process based on boundary integral equation method[J]. Metallurgical and Materials Transactions A,2014,45(2):1019-1026. [76] XIAO H,YUAN Z W,WANG T. Roll Flattening analytical model in flat rolling by boundary integral equation method[J]. Journal of Iron and Steel Research International,2013,20(10):39-45. [77] REN Z K,XIAO H,WANG T,et al. Plate profile control during ultra-thin strip rolling utilizing work roll edge contact[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(1):28. [78] LIAN J C. Analysis of profile and shape control in flat rolling[C[//Proceeding of the First International Conference on Steel Rolling Tokyo,Japan,1980:713-724. [79] REN Z K,WANG T,FAN W W. Establishment of the tension stress model considering metal lateral flow for foil rolling[J]. Meccanica,2019,54(1-2):261-270. [80] FU M W,WANG J L. Size effects in multi-scale materials processing and manufacturing[J]. International Journal of Machine Tools and Manufacture,2021,167:103755. [81] ZHANG D,LI H,GUO X,et al. An insight into size effect on fracture behavior of Inconel 718 cross-scaled foils[J]. International Journal of Plasticity,2022,153:103274. [82] CAI W,SUN C,WANG C,et al. Modelling of the intergranular fracture of TWIP steels working at high temperature by using CZM-CPFE method[J]. International Journal of Plasticity,2022,156:103366. [83] REN Z K,FAN W W,HOU J,et al. A numerical study of slip system evolution in ultra-thin stainless steel foil[J]. Materials,2019,12(11):1819. [84] 范婉婉. 304不锈钢极薄带轧制变形区细观力学行为研究[D]. 太原:太原理工大学,2020. FAN Wanwan. Study on micromechanical behavior of 304 Ultra-thin stainless steel strip in rolling deformation zone[D]. Taiyuan:Taiyuan University of Technology,2020. [85] Dong H R,LI X Q,LI Y,et al. A review of electrically assisted heat treatment and forming of aluminum alloy sheet[J]. The International Journal of Advanced Manufacturing Technology,2022,120(11-12):7079-7099. [86] REN Z K,GUO X W,LIU X,et al. Effect of pulse current treatment on interface structure and mechanical behavior of TA1/304 clad plates[J]. Materials Science and Engineering:A,2022,850:143583. [87] 任忠凯,郭雄伟,李宁,等. 脉冲电流对TA1/304复合板结合性能的改性机制研究[J]. 机械工程学报,2022,58(6):62-72. REN Zhoangkai,GUO Xiongwei,LI Ning,et al. Study on the modification mechanism of pulse current on the bonding properties of TA1/304 composite plate[J]. Journal of Mechanical Engineering,2022,58(6):62-72. [88] GUO X W,REN Z K,MA X,et al. Effect of temperature and reduction ratio on the interface bonding properties of TC4/304 plates manufactured by EA rolling[J]. Journal of Manufacturing Processes,2021,64:664-673. [89] SHAO G,LI H,ZHAN M. A review on ultrasonic-assisted forming:Mechanism,model,and process[J]. Chinese Journal of Mechanical Engineering,2021,34(1):99. [90] WANG T,WEI X,ZHANG H,et al. Plastic deformation mechanism transition with solute segregation and precipitation of 304 stainless steel foil induced by pulse current[J]. Materials Science and Engineering:A,2022,840:142899. [91] 魏晓蕾. 304不锈钢薄带电致塑性变形机制及轧制工艺研究[D]. 太原:太原理工大学,2021. WEI Xiaolei. Study on electroplastic deformation mechanism and rolling process of 304 stainless steel strip[D]. Taiyuan:Taiyuan University of Technology,2021. [92] FAN WW,REN Z K,WEI S,et al. Effect of high energy electric pulse on microstructure and mechanical properties of pre-deformed SUS 304 ultra-thin strip[J]. Materials Science and Engineering:A,2023:145364. [93] 范婉婉,刘奇,刘文文,等. 脉冲电流辅助SUS304极薄带拉伸变形研究[J]. 中国机械工程,2023,34(4):475-480,489. FAN Wanwan,LIU Qi,LIU Wenwen,et al. Research on pulse current-assisted tensile deformation of SUS304 ultra-thin strips[J]. China Mechanical Engineering,2023,34(4):475-480,489. [94] 李宁,廖席,段浩杰,等. 超声振动辅助SUS304薄带塑性变形的Johnson-Cook本构模型[J]. 塑性工程学报,2023,30(3):162-168. LI Ning,LIAO Xi,DUAN Haojie,et al. Johnson-Cook constitutive model of plastic deformation of SUS304 thin strip assisted by ultrasonic vibration[J]. Journal of Plasticity Engineering,2023,30(3):162-168. [95] 李宁. 超声对SUS304精密薄带轧制变形和表面粗糙度的影响研究[D]. 太原:太原理工大学,2022. LI Ning. Influence of ultrasonic on rolling deformation and surface roughness of SUS304 precision thin strip[D]. Taiyuan:Taiyuan University of Technology,2022. [96] 季策,黄华贵. 双金属复合管复合机理及制备工艺研究进展[J]. 特种铸造及有色合金,2018(12):1300-1306. JI Ce,HUANG Huagui. Research progresses on in bonding mechanism and preparation process of bimetallic clad pipes[J]. Special-cast and Non-ferrous Alloys,2018(12):1300-1306. [97] 季策,黄华贵,孙静娜,等. 层状金属复合板带铸轧复合技术研究进展[J]. 中国机械工程,2019,30(15):1873-1881. JI Ce,HUANG Huagui,SUN Jingna,et al. Research progresses on cast-rolling bonding technology of laminated metal clad strips[J]. China Mechanical Engineering,2019,30(15):1873-1881. [98] 季策,许石民,黄华贵. 金属包覆材料固-液铸轧复合技术研究进展[J]. 精密成形工程,2021,13(6):12-22. JI Ce,XU Shimin,HUANG Huagui. Research progress of solid-liquid cast-rolling bonding technology for metal cladding materials[J]. Journal of Netshape Forming Engineering,2021,13(6):12-22. [99] 周生刚,王涛,孙丽达. 金属层状复合材料的研究现状[J]. 热加工工艺,2016,45(10):15-20. ZHOU Shenggang,WANG Tao,SUN Lida. Research status of metal laminar composite[J]. Hot Working Technology,2016,45(10):15-20. [100] 王涛,齐艳阳,刘江林,等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报,2020,52(6):42-56. WANG Tao,QI Yanyang,LIU Jianglin,et al. Research progress of metal laminates roll bonding process at home and abroad[J]. Journal of Harbin Institute of Technology,2020,52(6):42-56. [101] WANG T,LI S,REN Z K,et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll[J]. Materials Letters,2019,234:79-82. [102] HAO P J,LIU Y M,WANG Z H,et al. Analysis of force and deformation parameters in corrugated clad rolling[J]. International Journal of Mechanical Sciences,2023,243:108042. [103] WANG T,LIU W L,LIU Y M,et al. Formation mechanism of dynamic multi-neutral points and cross shear zones in corrugated rolling of Cu/Al laminated composite[J]. Journal of Materials Processing Technology,2021,295:117157. [104] WANG T,GAO X Y,ZHANG Z X,et al. Interfacial bonding mechanism of Cu/Al composite plate produced by corrugated cold roll bonding[J]. Rare Metals,2021,40(5):1284-1293. [105] BURTON M S. Metallurgical principles of metal bonding[J]. Welding Journal,1954,33(11):1051. [106] WANG T,LI S,REN Z K,et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll[J]. Materials Letters,2019,234:79-82. [107] WANG T,WANG Y L,BIAN L P,et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling[J]. Materials Science & Engineering A,2019,765:138318. [108] LIU Y X,LIU Y M,WANG Z H,et al. Stress analysis and microstructure evolution of the Cu/Al composite plate during corrugated rolling[J]. Transactions of Nonferrous Metals Society of China,2023,33(5):1460-1471. [109] 刘畅. 钛/铝复合板波-平冷轧工艺及组织性能研究[D]. 太原:太原理工大学,2021. LIU Chang. Corrugated-flat cold rolling process and microstructure and properties of Ti/Al composite plate [D]. Taiyuan:Taiyuan University of Technology,2021. [110] LI S,LUO C,LIU Z D,et al. Interface characteristics and mechanical behavior of Cu/Al clad plate produced by the corrugated rolling technique[J]. Journal of Manufacturing Processes,2020,60:75-85. [111] WANG T,LI S,NIU H,et al. EBSD research on the interfacial microstructure of the corrugated Mg/Al laminated material[J]. Journal of Materials Research and Technology,2020,9(3):5840-5847. [112] WANG T,WANG Y L,BIAN L P,et al. Microstructural evolution and mechanical behavior of Mg/Al laminated composite sheet by novel corrugated rolling and flat rolling[J]. Materials Science and Engineering A,2019,765:138318. [113] GUO X W,REN Z K,MA X B,et al. Effect of temperature and reduction ratio on the interface bonding properties of TC4/304 plates manufactured by EA rolling[J]. Journal of Manufacturing Processes,2021,64:664-673. [114] CHEN K,LIU W W,WANG T,et al. Experimental research on the technology of two-pass different temperature rolling for thick steel/aluminum/aluminum- alloy composite plate[J]. The International Journal of Advanced Manufacturing Technology,2022,120:7689-7705. [115] REN Z K,GUO X W,LIU X,et al. Effect of pulse current treatment on interface structure and mechanical behavior of TA1/304 clad plates[J]. Materials Science & Engineering A,2022,850:143583. [116] WU Y,WANG T,REN Z K,et al. Evolution mechanism of microstructure and bond strength based on interface diffusion and IMCs of Ti/steel clad plates fabricated by double-layered hot rolling[J]. Journal of Materials Processing Technology,2022,310:117780. [117] 罗超,刘晓,任忠凯,等. 金属复合极薄带制备工艺研究进展[J]. 材料导报,2023,37(12):201-206. LUO Chao,LIU Xiao,REN Zhongkai,et al. Research progress in preparation of ultra-thin metal composite foil[J]. Materials Reports,2023,37(12):201-206. [118] 于庆波,刘相华,孙莹,等. 室温下金属铝的组合成形轧制[J]. 中国科学:技术科学,2019,49(4):411-418. YU Qingbo,LIU Xianghua,SUN Ying,et al. Combination forming rolling of metal aluminum at room temperature[J]. Scientia Sinica Technologica,2019,49(4):411-418. [119] BATTEZZATI L,PAPPALEPORE P,DURBIANO F,et al. Solid state reactions in Al/Ni alternate foils induced by cold rolling and annealing[J]. Acta Materialia,1999,47(6):1901-1914. [120] YOUSEFI M V,TOROGHINEJAD M R,REZAEIAN A. Mechanical properties and microstructure evolutions of multilayered Al–Cu composites produced by accumulative roll bonding process and subsequent annealing[J]. Materials Science & Engineering A,2014,601:40-47. [121] 王振华,刘元铭,王涛,等. 粗轧过程中轧制力和宽展的预测与分析[J]. 钢铁,2022,57(9):95-102. WANG Zhenhua,LIU Yuanming,WANG Tao,et al. Prediction and analysis of rolling force and width spread in rough rolling[J]. Iron and Steel,2022,57(9):95-102. [122] LIU Y M,WANG Z H,WANG T,et al. Prediction and analysis of the force and shape parameters in variable gauge rolling[J]. Chinese Journal of Mechanical Engineering,2022,35(4):79-92. [123] LIU Y M,WANG Z H,WANG T,et al. Prediction and mechanism analysis of the force and shape parameters using cubic function model in vertical rolling[J]. Journal of Materials Processing Technology,2022,303:117500. [124] LIU Y M,HAO P J,WANG T,et al. Mathematical model for vertical rolling deformation based on energy method[J]. International Journal of Advanced Manufacturing Technology,2020,107:875-883. [125] LIU Y M,SUN J,ZHANG D H,et al. Three-dimensional analysis of edge rolling based on dual-stream function velocity field theory[J]. Journal of Manufacturing Processes,2018,34(1):349-355. [126] 刘元铭,王振华,王涛,等. 热轧带钢出口凸度数据驱动建模及智能化预测分析[J]. 中国机械工程,2020,31(22):2728-2733. LIU Yuanming,WANG Zhenhua,WANG Tao,et al. Data-driven modeling and intelligent prediction analysis for hot strip outlet crowns[J]. China Mechanical Engineering,2020,31(22):2728-2733. [127] WANG T,HUANG Q X,XIAO H,et al. Modification of roll flattening analytical model based on the plane assumption[J]. Chinese Journal of Mechanical Engineering,2018,31(1):46. [128] LIU W,LI T,WANG T,et al. Analysis of the influence of roll size change on electromagnetic heat conversion capacity and roll profile control characteristics in the RPECT[J]. International Journal of Heat and Mass Transfer,2022,189:122686. [129] WANG T,REN Z K,HE D P. Equivalent numerical algorithm for the strip-rolling process of a continuous variable crown mill using the coupled rigid-plastic finite element method[J]. Journal of Marine Science and Technology,2019,27(2):123-132. [130] WU S W,YANG J,LIU Z Y. Composition- processing-property correlation mining of Nb-Ti microalloyed steel based on industrial data[J]. Materials Transactions,2020,61(4):691-699. [131] 杨健,吴思炜. 基于机器学习的钢铁轧制过程性能预测[J]. 钢铁,2021,56(9):1-9. YANG Jian,WU Siwei. Property prediction of steel rolling process based on machine learning[J]. Iron and Steel,2021,56(9):1-9. [132] 王国栋,刘振宇,张殿华. RAL关于钢材热轧信息物理系统的研究进展[J]. 轧钢,2021,38(1):1-7. WANG Guodong,LIU Zhenyu,ZHANG Dianhua. Research progress on the cyberphysical system of steel hot rolling in RAL[J]. Steel Rolling,2021,38(1):1-7. [133] WANG Z H,LIU Y M,WANG T,et al. Prediction model of hot strip crown based on industrial data and hybrid the PCA-SDWPSO-ELM approach[J]. Soft Computing,2023,27:12483-12499. [134] SUN J,SHAN P,WEI Z,et al. Data-based flatness prediction and optimization in tandem cold rolling[J]. Journal of Iron and Steel Research International,2021,28:563-573. [135] 邵健,何安瑞,陈雨来,等. 热轧智能工厂构架设计与实践:有形与无形的统一[J]. 中国冶金,2022,32(1):1-10. SHAO Jian,HE Anrui,CHEN Yulai,et al. Framework design and practice of hot rolling intelligent plant:unity of tangible and intangible[J]. China Metallurgy,2022,32(1):1-10. [136] LIU Y,WANG X,SUN J,et al. Strip thickness and profile-flatness prediction in tandem hot rolling process using mechanism model‐guided machine learning[J]. Steel Research International,2023,94(1):2200447. [137] 张殿华,彭文,孙杰,等. 板带轧制过程中的智能化关键技术[J]. 钢铁研究学报,2019,31(2):174-179. ZHANG Dianhua,PENG Wen,SUN Jie,et al. Key intelligent technologies of steel strip rolling process[J]. Journal of Iron and Steel Research,2019,31(2):174-179. [138] 康永林,田鹏,朱国明. 热宽带钢无头轧制技术进展及趋势[J]. 钢铁,2019,54(3):1-8. KANG Yonglin,TIAN Peng,ZHU Guoming. Progress and trend on hot wide strip endless rolling technology[J]. Iron and Steel,2019,54(3):1-8. [139] SUN M H,GUO S P,ZHENG L K,et al. Research on twin-roll strip cast-rolling based on a new sectional roll surface heat transfer boundary condition[J]. Ironmaking & Steelmaking,2020,48(3):254-262. [140] 康永林,朱国明,陈贵江,等. 中国薄宽带钢无头轧制技术最新进展[J]. 钢铁,2023,58(7):1-8. KANG Yonglin,ZHU Guoming,CHEN Guijiang,et al. Latest development of wide thin strip endless rolling technology in China[J]. Iron and Steel,2023,58(7):1-8. [141] BARELLA S,BONDI E,DI CECCA C,et al. New perspective in steelmaking activity to increase competitiveness and reduce environmental impact[J]. La Metallurgia Italiana,2014,106(11):31-39 [142] 毛新平. 热轧板带近终形制造技术[M]. 北京:冶金工业出版社,2020. MAO Xinping. Near-net manufacturing technology of hot rolled strip[M]. Beijing:Metallurgical Industry Press,2020. [143] 彭艳. 冶金轧制设备技术数字化智能化发展综述[J]. 燕山大学学报,2020,44(3):218-237. PENG Yan. Review on development of digital and intelligent metallurgical rolling equipment technology[J]. Journal of Yanshan University,2020,44(3):218-237. [144] LIU C Y,BARELLA S,PENG Y,et al. Modeling and characterization of dynamic recrystallization under variable deformation states[J]. International Journal of Mechanical Sciences,2023,238:1-21. [145] XUAN D,ZHOU C,ZHOU Y,et al. Comparison of the casting process of 3.0% Si steel between the top side-pouring twin-roll casting and twin-roll strip casting[J]. The International Journal of Advanced Manufacturing Technology,2022,119(11-12):7751-7764. [146] JI C,HUANG H G. A review of the twin-roll casting process for complex section products[J]. ISIJ International,2020,60(11):1-11. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 吴杰, 党嘉强, 李宇罡, 陈东, 安庆龙, 王浩伟, 陈明. 应力超声滚压表面强化机理和抗疲劳性能研究[J]. 机械工程学报, 2024, 60(9): 127-136. |
[3] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[4] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[5] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[6] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[7] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[8] | 岳晓明, 臧烁, 赵永华, 刘为东, 尹瀛月, 张勤河. 高品质超大深径比小孔电火花电解复合加工实验研究[J]. 机械工程学报, 2024, 60(9): 374-382. |
[9] | 蹇文轩, 丛孟启, 雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展[J]. 机械工程学报, 2024, 60(8): 48-64. |
[10] | 谢晨阳, 黄鲛, 肖光明, 张贤杰, 王俊彪, 李玉军. 考虑纤维波纹度的单向复合材料代表性体积元生成算法[J]. 机械工程学报, 2024, 60(8): 186-195. |
[11] | 陶亮, 唐钰, 李元强, 张大山, 张小龙. 多胎内传感器智能轮胎开发平台设计与侧偏试验研究[J]. 机械工程学报, 2024, 60(8): 245-255. |
[12] | 刘银水, 王振, 朱森林, 孙玲, 魏强, 周新平, 崔岩, 吴德发. 水雾和水幕复合喷头红外降温特性研究[J]. 机械工程学报, 2024, 60(8): 320-328. |
[13] | 邓建新, 袁邦颐, 黄秋林, 丁度坤, 辛曼玉, 刘光明. 基于工业机器人的复杂曲面磨抛关键技术综述[J]. 机械工程学报, 2024, 60(7): 1-21. |
[14] | 和东平, 王涛, 刘元铭, 徐慧东, 王君, 王志华. 板带轧机振动理论研究进展[J]. 机械工程学报, 2024, 60(7): 93-113. |
[15] | 方从富, 李弘扬, 沈剑云, 吴贤. 融合磨粒特征和工艺参数的粗糙度智能预测研究[J]. 机械工程学报, 2024, 60(7): 224-235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||