• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (5): 186-195.doi: 10.3901/JME.2019.05.186

• 制造工艺与装备 • 上一篇    下一篇

石英玻璃超精密磨削加工的表面完整性研究

高尚1, 耿宗超1, 吴跃勤2, 王紫光1, 康仁科1   

  1. 1. 大连理工大学精密与特种加工教育部重点实验室 大连 116024;
    2. 昆士兰大学机械与采矿工程学院 布里斯班 QLD4072 澳大利亚
  • 收稿日期:2018-03-09 修回日期:2018-09-24 出版日期:2019-03-05 发布日期:2019-03-05
  • 通讯作者: 康仁科(通信作者),男,1962年出生,博士,教授,博士生导师。主要研究方向为超精密加工与特种加工技术、难加工材料高效加工技术、半导体制造技术与设备。E-mail:kangrk@dlut.edu.cn
  • 作者简介:高尚,男,1982年出生,博士,副教授,硕士生导师。主要研究方向为精密与超精密加工技术。E-mail:gaoshang@dlut.edu.cn;耿宗超,男,1992年出生,硕士研究生。主要研究方向为硬脆材料超精密磨削技术。E-mail:gengzongchao@outlook.com;吴跃勤,男,1980年出生,博士,博士后研究员。主要研究方向为微纳结构和新型材料的特性表征。E-mail:y.wu4@uq.edu.au;王紫光,男,1984年出生,博士研究生。主要研究方向为硬脆材料超精密磨削技术。E-mail:wzg795073@foxmail.com
  • 基金资助:
    国家自然科学基金青年(51505063)、国家自然科学基金创新研究群体(51621064)、国家自然科学基金重点(51735004)、国家科技重大专项(02专项)(2014ZX02504001)、国家重点研发计划(2016YFB1102205)和国家自然科学基金面上(51575083)资助项目。

Surface Integrity of Quartz Glass Induced by Ultra-precision Grinding

GAO Shang1, GENG Zongchao1, WU Yueqin2, WANG Ziguang1, KANG Renke1   

  1. 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024;
    2. School of Mechanical and Mining Engineering, The University of Queensland, Brisbane QLD4072, Australia
  • Received:2018-03-09 Revised:2018-09-24 Online:2019-03-05 Published:2019-03-05

摘要: 为了实现石英玻璃的高效低损伤超精密磨削加工,研究不同粒度金刚石砂轮磨削石英玻璃的表面和亚表面质量,建立表面粗糙度与亚表面损伤深度之间的关系模型。通过石英玻璃磨削试验研究400#、1 500#、2 000#和5 000#金刚石砂轮磨削石英玻璃的表面微观形貌、表面粗糙度及其亚表面损伤深度,分析相应的材料去除方式;基于压痕断裂力学理论分析脆性域磨削石英玻璃时工件表面微观形貌和亚表面微裂纹的形成机理,建立表面粗糙度PV值和亚表面损伤深度SSD之间的定量关系。研究结果表明:随着砂轮粒度的减小,石英玻璃磨削表面的凹坑、微裂纹、深划痕等缺陷逐渐减少,表面粗糙度RaPV以及亚表面损伤深度SSD均随之明显减小,从400#砂轮磨削表面的Ra 274.0 nm、PV 5.35 μm和SSD 5.73 μm降低至5 000#砂轮磨削表面的Ra 1.4 nm、PV 0.02 μm和SSD 0.004 μm。500#和1 500#砂轮磨削表面的材料去除方式为脆性断裂去除,2 000#砂轮磨削表面的材料去除方式同时包括脆性断裂去除和塑性流动去除,但以塑性流动去除为主,5 000#砂轮磨削表面的材料去除方式为塑性流动去除;脆性域磨削石英玻璃的表面粗糙度PV与亚表面损伤深度SSD之间满足SSD=(0.627~1.356)PV4/3的数学关系。

关键词: 表面粗糙度, 材料去除机理, 磨削, 石英玻璃, 亚表面损伤

Abstract: In order to achieve high efficiency and low damage grinding for quartz glass, surface and subsurface qualities of ground quartz glasses using diamond wheels of various grit sizes are systematically investigated, and a mathematic relationship between the surface roughness and the subsurface damage depth is established. Grinding performance and surface integrity of quartz glass under diamond grinding using grit size of 400#, 1 500 #, 2 000# and 5 000#, respectively, are characterized in terms of surface topography, surface roughness and subsurface defect depth. The material removal mode of quartz glass for such diamond wheels is presented as well. The mechanism of surface morphology and subsurface microcrack produced in brittle removal mode is analyzed using indentation fracture mechanics, and the relationship between roughness value PV and subsurface damage depth SSD is established. The experiment results showed that with the decrease in wheel grit size, the quality of defects including pits, microcracks and deep scratches generated on the surface decreased, resulting in the decreased surface roughness and subsurface damage depth from Ra 274.0 nm, PV 5.35 μm and SSD 5.73 μm for 400# wheel to Ra 1.4 nm, PV 0.02 μm and SSD 0.004 μm for 5 000# wheel. The dominant removal mode in grinding quartz glass for 400# and 1 500# wheel is brittle fracture, that for 2 000# wheel included both brittle fracture and ductile cutting but ductile removal is more prevalent, and that for 5 000# wheel is ductile cutting removal. In the brittle mode grinding process, the relationship between subsurface roughness value PV and subsurface damage depth SSD is in accord with the formula SSD=(0.627~1.356) PV4/3.

Key words: grinding, material removal mechanism, quartz glass, subsurface damage, surface roughness

中图分类号: