• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 178-198.doi: 10.3901/JME.2025.09.178

• 特邀专栏:高性能制造 • 上一篇    

扫码分享

超声微磨削生物骨非均匀热源温度场模型与实验验证

孙金刚1, 杨敏1, 杨玉莹2, 张彦彬1, Y S DAMBATTA1,3, 周宗明4, 李长河1   

  1. 1. 青岛理工大学机械与汽车工程学院 青岛 266520;
    2. 齐鲁工业大学(山东省科学院)机械工程学部 济南 250353;
    3. 艾哈迈杜·贝洛大学机械工程系 扎里亚 810106 尼日利亚;
    4. 汉能(青岛)润滑科技有限公司 青岛 266200
  • 收稿日期:2024-05-11 修回日期:2024-10-18 发布日期:2025-06-12
  • 通讯作者: 李长河,男,1966年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:sy_lichanghe@163.com E-mail:sy_lichanghe@163.com
  • 作者简介:孙金刚,男,1996年出生。主要研究方向为洁净与精密制造。E-mail:sdhzsjg2358015477@163.com
  • 基金资助:
    国家自然科学基金(52205481,52105457)、泰山学者专项基金(tsqn202211179)和山东省自然科学基金(ZR2022QE159,2023KJ114,ZR2023QE057,ZR2022QE028)资助项目。

Ultrasonic Micro-grinding Biological Bone Non-uniform Heat Source Temperature Field Model and Experimental Verification

SUN Jingang1, YANG Min1, YANG Yuying2, ZHANG Yanbin1, Y S DAMBATTA1,3, ZHOU Zongming4, LI Changhe1   

  1. 1. School of Mechanical and Automobile Engineering, Qingdao University of Technology, Qingdao 266520;
    2. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353;
    3. Mechanical Engineering Department, Ahmadu Bello University, Zaria 810106, Nigeria;
    4. Hanergy(Qingdao) Lubrication Technology Co., Ltd., Qingdao 266100
  • Received:2024-05-11 Revised:2024-10-18 Published:2025-06-12

摘要: 骨微磨削是神经外科、脊柱外科等高风险手术中不可或缺的方法,骨磨削去除过程热损伤是其技术瓶颈。针对以上临床需求和技术瓶颈,提出了一种超声振动辅助微磨削生物骨新工艺,但超声作用下的非均匀热源分布模型尚不明确,超声赋能作用下的生物骨热传递机制与温度场模型尚需建立。首先,研究了超声振动辅助微磨削生物骨材料去除机理,重构了球形磨头表面几何形貌,揭示了接触弧长变化机理,建立了超声振动作用下任意时间点的未变形切屑厚度模型。其次,建立了延性域去除,骨粉去除,脆性域去除阶段磨削力模型,揭示了有效磨削区的力学演变规律。进一步,研究了磨削热通量的周向和径向分布规律,建立了三维非均匀热源分布模型;研究了点热源和线热源以及面热源温度场,建立了超声振动辅助微磨削生物骨的三维非均匀热源温度场模型。最后,进行了磨削温度场的正交实验验证,结果表明,当振幅为6 μm,磨削深度为15 μm,磨头半径为3.5 mm,进给速度为3 mm/s时,与基于均匀热源模型的温度场相比,基于非均匀热源模型的温度场预测结果与实际温度场吻合,最高温度预测平均误差从10.8%降低到6.7%。研究为超声振动辅助微磨削生物骨降低磨削温度提供了理论依据与技术支持。

关键词: 超声振动, 微磨削, 非均匀热源分布模型, 温度场

Abstract: Bone micro-grinding is an indispensable method in high risk surgery such as neurosurgery and spinal surgery, and thermal damage is the technical bottleneck of bone grinding removal. In view of the above clinical requirements and technical bottlenecks, a new ultrasonic vibration-assisted micro-grinding biological bone process is proposed. However, the non-uniform heat source distribution model under ultrasonic action is still unclear, and the biological bone heat transfer mechanism and temperature field model under ultrasonic enabling need to be established. Firstly, the removal mechanism of biological bone material by ultrasonic vibration assisted micro-grinding is studied, the surface geometry of spherical grinding head is reconstructed, the contact arc length variation mechanism is revealed, and the thickness model of undeformed chips at any time point under ultrasonic vibration is established. Secondly, the grinding force model of ductile domain removal, bone meal removal and brittle domain removal is established to reveal the mechanical evolution of the effective grinding zone. Further, the circumferential and radial distribution of grinding heat flux is studied, and a three-dimensional non-uniform heat source distribution model is established. The temperature field of point heat source, line heat source and surface heat source is studied, and the three-dimensional non-uniform heat source temperature field model of micro-grinding biological bone assisted by ultrasonic vibration is established. Finally, orthogonal experiments are carried out to verify the grinding temperature field. The results show that when the amplitude is 6 μm, the grinding depth is 15 μm, the radius of the grinding head is 3.5 mm, and the feed speed is 3 mm/s, compared with the temperature field based on the uniform heat source model, the predicted temperature field based on the non-uniform heat source model is consistent with the actual temperature field. The average error in the maximum temperature forecast was reduced from 10.8% to 6.7%. The research provides theoretical basis and technical support for ultrasonic vibration assisted micro-grinding biological bone to reduce grinding temperature.

Key words: ultrasonic vibration, micro-grinding, non-uniform heat source distribution model, temperature field

中图分类号: