[1] YANG Min,LI Changhe,SAID Z,et al. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding[J]. Journal of Manufacturing Processes,2021,71:501-514. [2] 杨敏,李长河,张彦彬,等. 神经外科颅骨磨削温度场预测新模型[J]. 机械工程学报. 2018,54(23):215-222. YANG Min,LI Changhe,ZHANG Yanbin,et al. A new model for predicting neurosurgery skull bone grinding temperature field[J]. Journal of Mechanical Engineering,2018,54(23):215-222. [3] CHEN Qisen,LIU Yu,DONG Qiushi. Modeling and experimental validation on temperature diffusion mechanism in high-speed bone milling[J]. Journal of Materials Processing Technology,2020,286:116810. [4] ZHANG Lihui,TAI B L,WANG Guangjun,et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery[J]. Medical Engineering & Physics,2013,35(10):1391-1398. [5] SHIH A J,TAI B L,ZHANG Lihui,et al. Prediction of bone grinding temperature in skull base neurosurgery[J]. Cirp Annals-Manufacturing Technology,2012,61(1):307-310. [6] TAI B L,ZHANG Lihui,WANG A C,et al. Temperature prediction in high speed bone grinding using motor PWM signal[J]. Medical Engineering & Physics,2013,35(10):1545-1549. [7] WANG Guangjun,ZHANG Lihui,WANG Xudong,et al. An inverse method to reconstruct the heat flux produced by bone grinding tools[J]. International Journal of Thermal Sciences,2016,101:85-92. [8] 张丽慧,王广军,陈红,等. 基于导热反问题求解骨磨削过程移动边界热流[J]. 工程热物理学报,2016,37(12):2621-2625. ZHANG Lihui,WANG Guangjun,CHEN Hong,et al. Estimation of moving boundary heat flux during bone grinding based on inverse heat conduction problem[J]. Journal of Engineering Thermophysics, 2016,37(12):2621-2625. [9] 张丽慧. 骨头磨削过程传热及其反问题研究[D],重庆:重庆大学,2014. ZHANG Lihui. Research on the heat transfer and its inverse problem for bone grinding process[D],Chongqing:Chongqing University,2014. [10] S K,Y O,H I,et al. Thermological study of drilling bone tissue with a high-speed drill[J]. Neurosurgery,2000,46(5):1162-8. [11] SASAKI M,MORRIS S,GOTO T,et al. Spray-irrigation system attached to high-speed drills for simultaneous prevention of local heating and preservation of a clear operative field in spinal surgery[J]. Neurologia Medico- Chirurgica,2010,50(10):900-904. [12] ZHANG Lihui,TAI B L,WANG A C,et al. Mist cooling in neurosurgical bone grinding[J]. CIRP Annals- Manufacturing Technology,2013,62(1):367-370. [13] 杨敏. 医用纳米粒子射流喷雾式冷却生物骨微磨削热力学作用机理与温度场动态模型[D]. 青岛:青岛理工大学,2019. YANG Min. Medical thermodynamic mechanism and temperature field dynamic model of bio-bone micro- grinding with nanoparticle jet spray cooling[D]. Qingdao:Qingdao University of Technology,2019. [14] ZHANG Lihui,ZOU Lei,WEN Donghui,et al. Investigation of the effect of process parameters on bone grinding performance based on on-line measurement of temperature and force sensors[J]. Sensors,2020,20(11):3325. [15] YANG Min,LI Changhe,ZHANG Yanbin,et al. Research on microscale skull grinding temperature field under different cooling conditions[J]. Applied Thermal Engineering,2017,126:525-537. [16] DUAN Zhenjing,WANG Shuaishuai,WANG Ziheng,et al. Tool wear mechanisms in cold plasma and nano- lubricant multi-energy field coupled micro-milling of Al- Li alloy[J]. Tribology International,2024,192:109337. [17] ZHANG Menghua,XIA Ziwen,SHAN Chenwei,et al. Analytical model of grinding force for ultrasonic-assisted grinding of Cf/SiC composites[J]. International Journal of Advanced Manufacturing Technology,2023,126(5-6):2037-2052. [18] ZHAO Biao,HUANG Qiang,CAO Yang,et al. Thermal analysis of ultrasonic vibration-assisted grinding with moment-triangle heat sources[J]. International Journal of Heat and Mass Transfer,2023,216:124552. [19] HUANG Bo,WANG Wenhu,XIONG Yifeng,et al. Investigation of force modeling in ultrasonic vibration- assisted drilling SiCf/SiC ceramic matrix composites[J]. Journal of Manufacturing Processes,2023,96:21-30. [20] YANG Yuying,YANG Min,LI Changhe,et al. Machinability of ultrasonic vibration-assisted micro- grinding in biological bone using nanolubricant[J]. Frontiers of Mechanical Engineering,2023,18(1):1. [21] BABBAR A,JAIN V,GUPTA D. Preliminary investigations of rotary ultrasonic neurosurgical bone grinding using Grey-Taguchi optimization methodology[J]. Grey Systems-Theory and Application,2020,10(4):479-493. [22] WANG Xuezhi,YU Tianbiao,SUN Xue,et al. Study of 3D grinding temperature field based on finite difference method:considering machining parameters and energy partition[J]. International Journal of Advanced Manufacturing Technology,2016,84(5-8):915-927. [23] SUN Jingang,LI Changhe,ZHOU Zongming,et al. Material Removal Mechanism and Force Modeling in Ultrasonic Vibration-Assisted Micro-Grinding Biological Bone[J]. Chinese Journal of Mechanical Engineering,2023,36(1):129. [24] QU Shuoshuo,GONG Yadong,YANG Yuying,et al. Mechanical model and removal mechanism of unidirectional carbon fibre-reinforced ceramic composites[J]. International Journal of Mechanical Sciences,2020,173:105465. [25] ZHU Chuanmin,GU Peng,WU Yinyue,et al. Surface roughness prediction model of SiCp/Al composite in grinding[J]. International Journal of Mechanical Sciences,2019,155:98-109. [26] WU Chongjun,LI Beizhi,LIU Yao,et al. Surface roughness modeling for grinding of Silicon Carbide ceramics considering co-existence of brittleness and ductility[J]. International Journal of Mechanical Sciences,2017,133:167-177. [27] HECKER R L,LIANG S Y,WU Xiaojian,et al. Grinding force and power modeling based on chip thickness analysis[J]. The International Journal of Advanced Manufacturing Technology,2007,33(5-6):449-459. [28] YAO Longxu,LIU Zhanqiang,SONG Qinghua,et al. Prediction modelling of cutting force in rotary ultrasonic end grinding 2.5D woven SiO2f/SiO2 ceramic matrix composite[J]. Composite Structures,2023,304:116448. [29] ZHANG Xiaohong,KANG Zhongxiong,LI Si,et al. Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics[J]. Ceramics International,2019,45(15):18487-18500. [30] KANG Renke,LIU Jinting,DONG Zhigang,et al. An improved cutting force model for ultrasonically assisted grinding of hard and brittle materials[J]. Applied Sciences-Basel,2021,11(9):3888. [31] ZHOU Yunguang,TIAN Chuanchuan,JIA Shiqi,et al. Study on grinding force of two-dimensional ultrasonic vibration grinding 2.5D-C/SiC composite material[J]. Crystals,2023,13(1):151. [32] LIU P,MAO S C,WANG L H,et al. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline,textured,columnar-structured thin gold films[J]. Scripta Materialia,2011,64(4):343-346. [33] LI Chen,LI Xuliang,WU Yueqin,et al. Deformation mechanism and force modelling of the grinding of YAG single crystals[J]. International Journal of Machine Tools& Manufacture,2019,143:23-37. [34] ZHENG Zhengding,HUANG Kai,LIN Chuangting,et al. An analytical force and energy model for ductile-brittle transition in ultra-precision grinding of brittle materials[J]. International Journal of Mechanical Sciences,2022,220:107107. [35] SANTIUSTE C,RODRIGUEZ -MILLAN M,GINER E,et al. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone[J]. Composite Structures,2014,116:423-431. [36] 廖志荣. 骨材料切削加工及一种新型刀具研究[D]. 哈尔滨:哈尔滨工业大学,2017. LIAO Zhirong. Research on bone cutting and a novel tool development[D]. Harbin:Harbin Institute of Technology,2017. [37] TAHMASBI V,QASEMI M,GHASEMI R,et al. Experimental study and sensitivity analysis of force behavior in cortical bone milling[J]. Medical Engineering & Physics,2022,105:103821. [38] 李升. 人体骨硬度图谱及骨硬度与生物力学特性关系的研究[D]. 石家庄:河北医科大学,2021. LI Sheng. Study of human bone hardness atlas and the relationshipbetween bone hardness and biomechanical properties[D]. Shijiazhuang:Hebei Medical University,2021. [39] 朱铮. 骨组织磨削特性实验研究[D]. 厦门:华侨大学,2014. ZHU Zheng. Experimental study on bone tissue grinding characteristics[D]. Xiamen:Huaqiao University,2014. [40] ZHANG Yue,ROBLES-LINARES J A,CHEN Lei,et al. Advances in machining of hard tissues-From material removal mechanisms to tooling solutions[J]. International Journal of Machine Tools & Manufacture,2022,172:103838. [41] WANG Yan,LIN Bin,WANG Shaolei,et al. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing[J]. International Journal of Machine Tools & Manufacture,2014,77:66-73. [42] ZHANG Zikang,YUAN Songmei,GAO Xiaoxing,et al. Analytical modelling of side grinding of orthogonal laminated SiCf/SiC composites based on effective elastic properties[J]. International Journal of Advanced Manufacturing Technology,2022,120(9-10):6419-6434. [43] LAWN B,WILSHAW R. Indentation fracture:Principles and applications[J]. Journal of Materials Science,1975,10(6). [44] QIAO Guochao,CHENG Zhao,ZHENG Wei,et al. Grinding force model for longitudinal-torsional ultrasonic- assisted face grinding of ceramic matrix composites[J]. International Journal of Advanced Manufacturing Technology,2022,120(11-12):7721-7733. [45] LI Zhipeng,ZHANG Feihu,LUO Xichun,et al. A New Grinding Force Model for Micro Grinding RB-SiC Ceramic with Grinding Wheel Topography as an Input[J]. Micromachines,2018,9(8):368. [46] ZHANG Feihu,MENG Binbin,GENG Yanquan,et al. Friction behavior in nanoscratching of reaction bonded silicon carbide ceramic with Berkovich and sphere indenters[J]. Tribology International,2016,97:21-30. [47] YANG Min,LI Changhe,ZHANG Yanbin,et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools & Manufacture,2017,122:55-65. [48] JAEGER J C. Moving sources of heat and the temperature of sliding contacts[J]. Proceedings of the royal society of New South Wales,1942,76(3):203-224. [49] OUTWATER J O,SHAW M C. Surface temperature in grinding[J]. ASME,1952,74:73-81. [50] HAHN R S. On the nature of the grinding process[C]//Proceedings of the 3rd Machine Tool Design and Research Conference,1962. [51] YANG Min,KONG Ming,LI Changhe,et al. Temperature field model in surface grinding:A comparative assessment[J]. International Journal of Extreme Manufacturing,2023,5(4):042011. [52] WANG Ruiqin,DAI Shijie,ZHANG Huibo,et al. The temperature field study on the annular heat source model in large surface grinding by cup wheel[J]. International Journal of Advanced Manufacturing Technology,2017,93(9-12):3261-3273. [53] LI Haonan,AXINTE D. On a stochastically grain- discretised model for 2D/3D temperature mapping prediction in grinding[J]. International Journal of Machine Tools & Manufacture,2017,116:60-76. [54] 杨敏,李长河,张彦彬,等. 骨外科纳米粒子射流喷雾式微磨削温度场理论分析及试验[J]. 机械工程学报,2018,54(18):194-203. YANG Min,LI Changhe,ZHANG Yanbin,et al. |