• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 120-133.doi: 10.3901/JME.2025.07.120

• 特邀专栏:先进纤维增强复合材料加工 • 上一篇    下一篇

扫码分享

大型复材薄壁构件工业机器人高精度原位铣边加工新方法

田威1, 李鹏程1, 缪云飞1, 廖文和2, 董松2, 孟丹2   

  1. 1. 南京航空航天大学机电学院 南京 210016;
    2. 南京理工大学机械工程学院 南京 210094
  • 收稿日期:2024-06-03 修回日期:2024-09-24 发布日期:2025-05-12
  • 作者简介:田威(通信作者),男,1977年出生,博士,教授,博士研究生导师。主要研究方向为飞机智能装配、机器人技术与装备。E-mail:tw_nj@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(U22A20204,52075256,52205530)、国防基础科研(JCKY2021204B045)和国防科工局民用航天技术(D020201)资助项目。

A New Method for High-precision In-situ Milling Edge Processing of Industrial Robots for Large Composite Thin-walled Components

TIAN Wei1, LI Pengcheng1, MIAO Yunfei1, LIAO Wenhe2, DONG Song2, MENG Dan2   

  1. 1. College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094
  • Received:2024-06-03 Revised:2024-09-24 Published:2025-05-12

摘要: 针对大型复合材料薄壁件刚性弱、切削精度难以保障,以及仿形工装设计制造周期长、加工成本高等问题,提出了一种基于可重构柔性工装的大型复材薄壁构件机器人高精度原位铣边加工新方法。设计了一套面向大型复材构件的机器人铣边加工系统,首先,针对大型复材构件空间曲线的轨迹跟踪问题,结合双目视觉测量系统,研究了基于视觉引导的机器人轨迹精度补偿算法,并进行高精度伺服控制律设计,实现机器人高精度轨迹跟踪控制;在此基础上,开展了大型薄壁构件和柔性工装的一体化动力学建模方法研究,提出了基于智能优化算法的柔性工装最佳支撑布局策略,提高大型复杂薄壁构件的支撑刚性;进一步地,设计了超声加工刀具,探究了超声振动铣削加工工艺。最后,通过实验验证,有效地降低了工业机器人的加工振动和轨迹误差,实现了机器人对大型复合材料薄壁件的高精加工。

关键词: 工业机器人, 大型复材, 铣边加工, 视觉引导, 动力学建模, 超声振动切削

Abstract: Addressing the challenges of weak rigidity and difficulty in ensuring cutting accuracy of large composite thin-walled components, as well as long design and manufacturing cycles and high processing costs of profiling tooling, a new method for high-precision in-situ milling edge processing of large composite thin-walled components using reconfigurable flexible tooling is proposed. This studg designs a robotic milling system for large composite components. Firstly, for the trajectory tracking problem of large composite components’ spatial curves, a vision-guided robot trajectory accuracy compensation algorithm is studied in combination with a binocular vision measurement system, and a high-precision servo control law is designed to achieve high-precision trajectory tracking control of the robot. Then an dynamics modeling method for large thin-walled components and flexible tooling is studied, and an optimal support layout strategy for flexible tooling based on intelligent optimization algorithm is proposed to improve the support rigidity of large complex thin-walled components. Further, an ultrasonic machining tool is designed and ultrasonic vibration milling processing technology is studied. Finally, through test verification, the processing vibration and trajectory errors of industrial robots are effectively reduced, and high-precision machining of large composite thin-walled components by robots is achieved.

Key words: industrial robot, large composite, milling edge, visual guidance, dynamics modeling, ultrasonic vibration cutting

中图分类号: