• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 142-156.doi: 10.3901/JME.2025.09.142

• 特邀专栏:高性能制造 • 上一篇    

扫码分享

微小孔螺旋磨削加工磨粒切削特性研究

陈博川1,2, 张翀3, 李麒麟1,2, 高晓星1,2, 袁松梅1,2,4   

  1. 1. 北京航空航天大学机械工程及自动化学院 北京 100191;
    2. 北京市高效绿色数控加工工艺及装备工程技术研究中心 北京 100191;
    3. 航天材料及工艺研究所 北京 100076;
    4. 北京航空航天大学宁波创新研究院高精尖中心 宁波 315100
  • 收稿日期:2024-05-08 修回日期:2024-10-18 发布日期:2025-06-12
  • 通讯作者: 袁松梅,女,1971年出生,博士,教授,博士研究生导师。主要研究方向为先进加工技术及装备、医工结合。E-mail:yuansm@buaa.edu.cn E-mail:yuansm@buaa.edu.cn
  • 作者简介:陈博川,男,1991年出生,博士研究生。主要研究方向为复合材料微小孔加工。E-mail:1668397430@qq.com
  • 基金资助:
    航空发动机及燃气轮机基础科学中心(P2022-AB-IV-002-002)资助项目。

Investigation of Abrasive Grains Cutting Characteristics in Micro-hole Helical Grinding Process

CHEN Bochuan1,2, ZHANG Chong3, LI Qilin1,2, GAO Xiaoxing1,2, YUAN Songmei1,2,4   

  1. 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191;
    2. Beijing Engineering Technological Research Center of High-Efficient and Green CNC Machining Process and Equipment, Beijing 100191;
    3. Aerospace Research Institute of Materials & Processing Technology, Beijing 100076;
    4. Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo 315100
  • Received:2024-05-08 Revised:2024-10-18 Published:2025-06-12

摘要: 螺旋磨削工艺是实现难加工材料微小孔制造的有效方法之一。由于刀具挠度不可忽略,对刀具挠曲变形条件下磨粒切削性能的研究至关重要。因此,首先分析了刀具挠度对螺旋磨削侧刃未变形切屑形态的影响,建立了侧刃未变形切屑厚度/高度和截面积模型。其次,分析了刀具挠度对底刃未变形切屑形态的影响;通过显微观测法确定了底刃有效磨粒数分布,进而定义了名义刃数,并进一步建立了底刃单颗磨粒未变形切屑厚度模型。基于以上模型研究了微小孔螺旋磨削中刀具不同位置磨粒的切削特性,发现刀具底刃存在纯底刃切削磨粒、纯侧刃切削磨粒以及底刃和侧刃同时参与切削的混合切削磨粒;首次定义了纯底刃切削磨粒的分布范围Dp;当刀具直径为目标孔直径的2/3或更小时即可消除纯底刃切削磨粒的影响,此时刀具底刃切屑黏结大幅减少,磨粒切削性能最佳。最后在高体积分数铝基碳化硅复合材料和淬火处理的钢结硬质合金材料上开展了微小孔螺旋磨削试验,通过分析切削力并观测刀具磨损状态,验证了纯底刃切削磨粒的切削特性。以上研究成果可为微小孔螺旋磨削加工的切削参数选择和刀具优化设计提供理论指导。

关键词: 微小孔, 螺旋磨削, 运动学分析, 未变形切屑

Abstract: The helical grinding process is an effective method for fabricating micro-holes in difficult-to-machine materials. However, there is a scarcity of research on undeformed chip model that accounts for the weak rigidity of the tool. To address these issues, a kinematic analysis of helical grinding is carried out, establishing a model for undeformed chip thickness/height and cross-sectional area on the side edge, and analyzing the impact of tool deflection on undeformed chips. Employing image recognition techniques, the variation law of effective abrasive grains count on the bottom edge is obtained, defining the effective nominal number of cutting edges and establishing a model for the undeformed chip thickness of a single grain considering tool deflection. Based on these models, the cutting characteristics of abrasive grains at different positions on the tool are studied. It is found that there are pure bottom edge cutting grits, pure side edge cutting grits, and mixed cutting grits. The distribution range of pure bottom edge cutting grits, Dp, is defined; when the tool diameter is two-thirds or less of the target hole diameter, Dp equals zero, significantly reducing bottom edge chip bonding and optimizing grit cutting performance. Finally, micro-hole helical grinding experiments are conducted on high-volume SiCp/Al and quenched TiCp/Fe. The research findings provide theoretical guidance for cutting parameter selection and tool design in micro-hole helical grinding.

Key words: micro-hole, helical grinding, kinematic analysis, undeformed chip

中图分类号: