• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 168-177.doi: 10.3901/JME.2025.09.168

• 特邀专栏:高性能制造 • 上一篇    

扫码分享

金刚石磨粒切削-滚压钛合金的干磨削系统控制

杨浩, 谢晋, 陈佳欣, 陈钊杰, 何铨鹏   

  1. 华南理工大学机械与汽车工程学院 广州 510640
  • 收稿日期:2024-05-08 修回日期:2024-11-29 发布日期:2025-06-12
  • 通讯作者: 谢晋,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料的精密/超精密加工及过程控制。E-mail:jinxie@scut.edu.cn E-mail:jinxie@scut.edu.cn
  • 作者简介:杨浩,男,1997年出生,博士研究生。主要研究方向为金刚石磨粒加工过程控制。E-mail:yanghao.lumia@foxmail.com
  • 基金资助:
    国家自然科学基金(51975219,52375493)和广东省基础与应用基础研究基金(2022A1515220053)资助项目。

Development of Dry Grinding Control System for Diamond Cutting-to-burnishing Titanium Alloy Process

YANG Hao, XIE Jin, CHEN Jiaxin, CHEN Zhaojie, HE Quanpeng   

  1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640
  • Received:2024-05-08 Revised:2024-11-29 Published:2025-06-12

摘要: 生物及航空用钛合金及加工工具的低导热率导致机械加工表面热量集中,而超导热金刚石磨粒在磨削中受钛原子催化会发生石墨化磨损,故均需使用难回收的冷却液。基于金刚石的超导热性,增大磨粒刃端面积可以分散钛合金表面的热力集中和抑制磨粒切削刃的石墨化实现干式加工,但超硬金刚石磨粒修整困难。采用放电热化学干式修整技术可以修平金刚石磨粒切削刃端,但修整过程砂轮与电极间的脉冲放电热能不稳定,无法有效进行热化学修整。因此,针对金刚石放电热化学修整功率,研究修整参数的模糊控制技术,提出基于磨粒修平刃端面积的切削-滚压的钛合金干磨削方法,旨在开发加工目标-磨粒形貌-修整工艺-切削滚压状态全流程逻辑链控制的干磨削系统。首先,依据磨粒修整的刃端后刀面积建立磨粒切削-滚压转变系数相关的钛合金加工模型;其次,分析金刚石切削界面热传递平衡的触发条件,建立放电热化学机械复合修整工艺的模糊控制模型;最后进行TC4钛合金干磨削系统的控制实验。结果表明,调节磨粒切削-滚压转变系数可在加工过程中控制磨粒的加工行为由切削转变为滚压精整,增大该系数能够依次实现加工表面的法向切削力分散、金刚石磨粒的石墨化抑制及加工表面的热量分散。同时,磨削系统能够实时控制修整过程非线性相关的放电电源参数和机械运动参数,保持放电热化学修整功率在±5%以内,实现了12 μm大切深的钛合金干磨削,粗糙度下降55%到496 nm,表面硬度保持在340 HV,不仅效率高且可以实现钛合金表面强化的抛光功能。

关键词: 金刚石磨粒, 钛合金, 切削-滚压, 磨削系统, 模糊控制

Abstract: The low thermal conductivity of titanium alloys used in biotechnology and aerospace, as well as the machining tools, leads to a concentration of heat on the surface during mechanical processing. In the case of superconducting diamond abrasives, graphite wear occurs due to catalysis by titanium atoms during grinding. Therefore, both situations necessitate the use of non-recyclable cooling fluids. Based on the superconducting properties of diamond, it is possible to disperse the heat concentration on the surface of titanium alloys and suppress the graphite formation on the cutting edges of abrasive particles through an increase in the edge area of the grinding grit. This enables dry machining. However, it should be noted that the maintenance and dressing of ultra-hard diamond abrasives are difficult. The application of ECD mechanical-thermochemical dressing technology is capable of truncating the cutting edges of diamond abrasives. However, during the truncating process, the unstable nature of the thermal energy generated by the pulsed discharge between the grinding wheel and the electrode hinders effective thermal chemical dressing. Therefore, to address the power of ECD mechanical-thermochemical truncating, a fuzzy control technique for studying truncating parameters is proposed. Additionally, a titanium alloy dry machining method based on the concept of cutting-burnishing with increased area of abrasive edge for dressing is introduced. The aim is to develop a comprehensive dry grinding system that incorporates the logic chain control of the entire process, including machining objectives-abrasive morphology-dressing techniques-and cutting-burnishing conditions. First, a titanium alloy machining model related to the grain cutting-burnishing transition coefficient is carried out based on the truncated grain flank surface area; then, the trigger conditions of the thermal transmission balance at the diamond cutting interface are analysed, and the fuzzy control model for the process conditions in the electro-discharge thermochemical-mechanical hybrid truncating; and finally, the control experiments are conducted on the proposed dry grinding system for the TC4 titanium alloy. The results show that regulating the grain cutting-to-burnishing transition coefficient might change the grain machining behavior from cutting to burnishing. As the coefficient increases, the normal force dispersion on the machining surface, the diamond grain graphitization constraint and the thermal dispersion on the machining surface are activated successively. The system could real-time control the nonlinear-relevant electro-discharge parameters and mechanical movement parameters, achieving the stabilized electro-discharge truncating power within ±5% as well as the dry grinding of titanium alloy at a large depth of cut of 12 μm with a reduced roughness value of 496 nm by 55% and a maintained surface hardness of 340 HV. The proposed dry grinding system yields a high efficiency and a surface-hardening polishing effect.

Key words: daimond grain, titanium alloy, cutting-to-burnishing, grinding system, fuzzy control

中图分类号: