[1] VOIGTLÄNDER B. Scanning probe microscopy:Atomic force microscopy and scanning tunneling microscopy[M]. Berlin:Springer, 2015. [2] PAVLICEK N, GROSS L. Generation, manipulation and characterization of molecules by atomic force microscopy[J]. Nature Reviews Chemistry, 2017, 1(1):5. [3] XU K, CAO P G, HEATH J R. Graphene visualizes the first water adlayers on mica at ambient conditions[J]. Science, 2010, 329(5996):1188-1191. [4] 袁帅,刘连庆,王志东,等. 基于探针定位的原子力显微镜纳米操作虚拟夹具实现[J]. 机械工程学报, 2014, 50(13):142-147. YUAN Shuai, LIU Lianqing, WANG Zhidong, et al. Implementation of virtual clap based AFM nanomanipulation through tip positioning[J]. Journal of Mechanical Engineering, 2014, 50(13):142-147. [5] STAN G, KING S W. Atomic force microscopy for nanoscale mechanical property characterization[J]. J. Vac. Sci. Technol. B, 2020, 38(6):060801. [6] GAO Y. Review of the application of atomic force microscopy in testing the mechanical properties of two-dimensional materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4):929-943. [7] CARPICK R W, SALMERON M. Scratching the surface:Fundamental investigations of tribology with atomic force microscopy[J]. Chemical Reviews, 1997, 97(4):1163-1194. [8] LEE C, LI Q, KALB W, et al. Frictional characteristics of atomically thin sheets[J]. Science, 2010, 328(5974):76-80. [9] BENNEWITZ R. Friction force microscopy[J]. Materials Today, 2005, 8(5):42-48. [10] CHEN Z, KHAJEH A, MARTINI A, et al. Chemical and physical origins of friction on surfaces with atomic steps[J]. Science Advances, 2019, 5(8):eaaw0513. [11] ZENG X, PENG Y, LANG H, et al. Controllable nanotribological properties of graphene nanosheets[J]. Scientific Reports, 2017, 7:41891. [12] LIU S W, WANG H P, XU Q, et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere[J]. Nature communications, 2017, 8:14029. [13] LIU Z, YANG J, GREY F, et al. Observation of microscale superlubricity in graphite[J]. Physical Review Letters, 2012, 108(20):205503. [14] CHEN L, WEN J, ZHANG P, et al. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions[J]. Nature Communications, 2018, 9:1542. [15] ZENG X, PENG Y, LANG H, et al. Tuning the nanotribological behaviors of single silver nanowire through various manipulations[J]. Applied Surface Science, 2018, 440:830-840. [16] BYUN I S, YOON D, CHOI J S, et al. Nanoscale lithography on mono layer graphene using hydrogenation and oxidation[J]. Acs. Nano., 2011, 5(8):6417-6424. [17] CHEN S, GE S, TANG W, et al. Effect of friction on vibrotactile sensation of normal and dehydrated skin[J]. Skin Research and Technology, 2016, 22(1):25-31. [18] NEUMEISTER J M, DUCKER W A. Lateral normal and longitudinal spring constants of atomic-force microscopy cantilevers[J]. Review of Scientific Instruments, 1994, 65(8):2527-2531. [19] OGLETREE D F, CARPICK R W, SALMERON M. Calibration of frictional forces in atomic force microscopy[J]. Review of Scientific Instruments, 1996, 67(9):3298-3306. [20] CUMPSON P J, HEDLEY J, CLIFFORD C A. Microelectromechanical device for lateral force calibration in the atomic force microscope:Lateral electrical nanobalance[J]. Journal of Vacuum Science & Technology B, 2005, 23(5):1992-1997. [21] LI Q, KIM K S, RYDBERG A. Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system[J]. Review of Scientific Instruments, 2006, 77(6):13. [22] WAGNER K, CHENG P, VEZENOV D. Noncontact method for calibration of lateral forces in scanning force microscopy[J]. Langmuir, 2011, 27(8):4635-4644. [23] DZIEKONSKI C, DERA W, JARZABEK D M. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor[J]. Ultramicroscopy, 2017, 182:1-9. [24] ZHANG G, LI P, WEI D, et al. Lateral force calibration for atomic force microscope cantilevers using a suspended nanowire[J]. Nanotechnology, 2020, 31(47):475703. [25] WANG F, ZHAO X. Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy[J]. Review of Scientific Instruments, 2007, 78(4):043701. [26] 陈天星,张向军,孟永钢. 原子力显微镜摩擦力标定的改进楔形法[J]. 中国表面工程, 2011, 24(4):70-75. CHEN Tianxing, ZHANG Xiangjun, MENG Yonggang. Improved wedge method of the afm friction force calibration[J]. China Surface Engineering, 2011, 24(4):70-75. [27] 余家欣,钱林茂. 一种改进的原子力显微镜摩擦力标定方法[J]. 摩擦学学报, 2007, 27(5):472-476. YU Jiaxin, QIAN Linmao. An improved calibration method for friction force in atomic force microscipy[J]. Tribology, 2007, 27(5):472-476. [28] 宋晨飞,孙逸翔,孙毓明,等. 基于斜面的摩擦力显微镜探针扭转系数标定改进方法[J]. 摩擦学学报, 2018, 38(6):652-657. SONG Chenfei, SUN Yixiang, SUN Yuming, et al. Improved calibration method of tip torsion coefficient on friction force microscope by using a slope[J]. Tribology, 2018, 38(6):652-657. [29] HUTTER J L, BECHHOEFER J. Calibration of atomic-force microscope tips[J]. Review of Scientific Instruments, 1993, 64(7):1868-1873. [30] GREEN C P, LIOE H, CLEVELAND J P, et al. Normal and torsional spring constants of atomic force microscope cantilevers[J]. Review of Scientific Instruments, 2004,75(6):1988-1996. [31] SADER J E, CHON J W M, MULVANEY P. Calibration of rectangular atomic force microscope cantilevers[J]. Review of Scientific Instruments, 1999, 70(10):3967-3969. |