[1] GENZER J, EFIMENKO K. Recent developments in superhydrophobic surface and their relevance to marine fouling:a review[J]. Biofouling, 2006, 22(5):339-360. [2] KERSTIN K, BHARAT B, WIKHELM B. Diversity of structure, morphology and wetting of plant surface[J]. Soft Matter, 2008, 4(10):1943-1963. [3] 邱宇辰,刘克松,江雷. 花生叶表面的高黏附超疏水特性研究及其仿生制备[J]. 中国科学:化学, 2011, 41(2):403-408. QIU Yuchen, LIU Kejiang, JIANG Lei. High adhesion super-hydrophobic properties of peanut leaf surface and its biomimetic synthesis[J]. Science China, 2011, 41(2):403-408. [4] YAO J, WANG J N, YU Y H, et al. Biomimetic fabrication and characterization of an artificial rice leaf surface with anisotropic wetting[J]. Chinese Science Bulletin, 2012, 57(20):2631-2634. [5] 刘克松,江雷. 仿生结构及其功能材料研究进展[J]. 科学通报, 2009, 54(18):2667-2681. LIU Kejiang, JIANG Lei. Research progress of bionic structure and its function materials[J]. Chinese Science Bulletin, 2009, 54(18):2667-2681. [6] WANG G, GUO Z, LIU W. Interfacial effects of superhydrophobic plant surfaces:A review[J]. Journal of Bionic Engineering, 2014, 11(3):325-345. [7] BAEK S H, PARK J, KIM D M, et al. Giant piezoelectricity on Si for hyperactive MEMS[J]. Science, 2011, 334(6058):958-961. [8] BIFANO T. Adaptive imaging:MEMS deformable mirrors[J]. Nature photonics, 2011, 5(1):21-23. [9] 钱林茂,田煜,温诗铸. 纳米摩擦学[M]. 北京:科学出版社, 2013:339-339. QIAN Linmao, TIAN Yu, WEN Shizhu. Nano-tribology[M]. Beijing:Science Press, 2013:339-339 [10] PRÜM B, SEIDEL R, BOHN H F, et al. Plant surfaces with cuticular folds are slippery for beetles[J]. Journal of the Royal Society, Interface/the Royal Society, 2012, 9(66):127-135. [11] PRÜM B, BOHN H F, SEIDEL R, et al. Plant surfaces with cuticular folds and their replicas:Influence of microstructuring and surface chemistry on the attachment of a leaf beetle[J]. Acta Biomaterialia, 2013, 9(5):6360-6368. [12] GORB E, HASS K, HENRICH A, et al. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment[J]. Journal of Experimental Biology, 2005, 208(24):4651-4662. [13] BENZ M J, GORB E V, GORB E N. Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa[J]. Arthropod-Plant Interactions, 2012, 6(1):147-158. [14] BAUER U, SCHARMANN M, SKEPPER J, et al. 'Insect aquaplaning'on a superhydrophilic hairy surface:How Heliamphora nutans Benth. pitcher plants capture prey[J]. Proceedings of the Royal Society B:Biological Sciences, 2013, 280(1753):20122569. [15] FEDERLE W, RIEHLE M, CURTIS A S G, et al. An integrative study of insect adhesion:Mechanics and wet adhesion of pretarsal pads in ants[J]. Integrative and Comparative Biology, 2002, 42(6):1100-1106. [16] WHITNEY H M, FEDERLE W. Biomechanics of plant-insect interactions[J]. Current Opinion in Plant Biology, 2013, 16(1):105-111. [17] QIAN J, GAO H. Scaling effects of wet adhesion in biological attachment systems[J]. Acta Biomaterialia, 2006, 2(1):51-58. [18] LABONTE D, FEDERLE W. Scaling and biomechanics of surface attachment in climbing animals[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 2015, 370(1661):20140027. [19] GORB E V, PURTOV J, GORB S N. Adhesion force measurements on the two wax layers of the waxy zone in Nepenthes alata pitchers[J]. Scientific reports, 2014, 4:5154. [20] GAN Y. Attaching spheres to Cantilevers for colloidal probe force measurements:A simplified techniques[J]. Microscope Today, 2005, 13(6):48-50. [21] PRÜM B, SEIDEL R, BOHN H F, et al. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)[J]. Beilstein Journal of Nanotechnology, 2012, 3(1):57-64. [22] 温诗铸,黄平. 界面科学与技术[M]. 北京:清华大学出版社, 2011. WEN Shizhu, HUANG Ping. Interface science and technology[M]. Beijing:Tsinghua University Press, 2011. [23] DZYALOSHINSKⅡ I E, LIFSCHITZ E M, PITAEVSKⅡ L P. General theory of van der Waals'force[J]. Sov. Phys. Usp, 1961, 4(6):153-176. [24] POPOV V L. Contact mechanics and friction physical principles and applications[M]. German:Springer, 2009. [25] JOHNSON K L, KENDALL K, ROBERTS A D. Surfaces energy and contact of elatic solids[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Science, 1971, 324(1558):301-309. [26] BULLOCK J M R, FEDERLE W. The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula[J]. Insect Science, 2011, 18(3):298-304. [27] GORB E, VOIGT D, EIGENBRODE S D, et al. Attachment force of the beetle cryptolaemus montrouzieri (coleoptera, coccinellidae) on leaflet surfaces of mutants of the pea pisum sativum (fabaceae) with regular and reduced wax coverage[J]. Arthropod-Plant Interactions, 2008, 2(4):247-259. [28] VOIGT D, SCHUPPERT J M, DATTINGER S, et al. Sexual dimorphism in the attachment ability of the colorado potato beetle leptinotarsa decemlineata (coleopterachrysomelidae) to rough substrates[J]. Journal of Insect Physiology, 2008, 54(5):765-776. [29] VOIGT D, SCHWEIKART A, FERY A, et al. Leaf beetle attachment on wrinkles:Isotropic friction on anisotropic surfaces[J]. The Journal of Experimental Biology, 2012, 215(11):1975-1982. [30] SCHOLZ I, BÜCKINS M, DOLGE L, et al. Slippery surfaces of pitcher plants:Nepenthes wax crystals minimize insect attachment via microscopic surface roughness[J]. The Journal of Experimental Biology, 2010, 213(7):1115-1125. [31] 毕可东,宋小闯,王玉娟,等. 猪笼草蜡质滑移区表面反黏附特性的研究[J]. 机械工程学报, 2015, 51(23):103-109. BI Kedong, SONG Xiaochuang, WANG Yujuan, et al. Anti-adhension mechanisms of nepenthes waxy slippery zone surface[J]. Journal of Mechanical Engineering, 2015, 51(23):103-109. [32] WEI Z, ZHAO Y P. Growth of liquid bridge in AFM[J]. Journal of Physics D:Applied Physics, 2007, 40(14):4368-4375. [33] BHUSHAN B. Adhesion and stiction:Mechanisms, measurement techniques, and methods for reduction[J]. Journal of Vacuum Science & Technology B, 2003, 21(6):2262-2296. [34] BINGGELI M, MATE C M. Influence of capillary condensation of water on nanotribology studied by force microscopy[J]. Applied Physics Letters, 1994, 65(4):415-417. [35] WANG L, RÉGNIER S. Capillary force between a probe tip with a power-law profile and a surface or a nanoparticle[J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23(1):015001. |