[1] XIAO Yancai, WANG Yujia, DING Zhengtao. The application of heterogeneous information fusion in misalignment fault diagnosis of wind turbines[J]. Energies, 2018, 11(7):1655-1670. [2] 刘立芳,杨海霞,齐小刚. 基于线性判别分析的时频域特征提取算法[J]. 系统工程与电子技术, 2019, 41(10):2184-2190. LIU Lifang, YANG Haixia, QI Xiaogang. Time-frequency domain feature extraction algorithm based on linear discriminant analysis[J]. Systems Engineering and Electronics, 2019, 41(10):2184-2190. [3] XUE Hongtao, WU Meng, ZHANG Zimeng, et al. Intelligent diagnosis of mechanical faults of in-wheel motor based on improved artificial hydrocarbon networks[J]. ISA Transactions, 2022, 120:360-371. [4] PONCE H, SOUZA P V D, GUIMARAES A J, et al. Stochastic parallel extreme artificial hydrocarbon networks:An implementation for fast and robust supervised machine learning in high-dimensional data[J]. Engineering Applications of Artificial Intelligence, 2020, 89:103427-103443. [5] 薛红涛,殷苏群,李仲兴,等. 基于AHN的轮毂电机轴承故障特征提取方法[J]. 华中科技大学学报(自然科学版), 2019, 47(1):27-31. XUE Hongtao, YIN Suqun, LI Zhongxing, et al. Feature extraction method for mechanical faults of bearings in in-wheel motor based on AHN[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(1):27-31. [6] PONCE H, MARTINEZ-V M D L, MIRALLES-P L. A novel wearable sensor-based human activity recognition approach using artificial hydrocarbon networks[J]. Sensors, 2016, 16(7):1033-1061. [7] PONCE H, GUTIERREZ S. An indoor predicting climate conditions approach using internet-of-things and artificial hydrocarbon networks[J]. Measurement, 2019, 135:170-179. [8] 谢毅,侯彦娥,陈小潘,等. 超启发算法研究进展综述[J]. 计算机工程与应用, 2017, 53(14):1-8. XIE Yi, HOU Yane, CHEN Xiaopan, et al. Review of research progress of hyper-heuristic algorithms[J]. Computer Engineering and Applications, 2017, 53(14):1-8. [9] PONCE P, PONCE H, MOLINA A. Doubly fed induction generator (DFIG) wind turbine controlled by artificial organic networks[J]. Soft Computing, 2018, 22(9):2867-2879. [10] WANG L M, SHAO Y M. Crack fault classification for planetary gearbox based on feature selection technique and K-means clustering method[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1):242-252. [11] 周丽娟,王慧,王文伯,等. 面向海量数据的并行K-Means算法[J]. 华中科技大学学报(自然科学版), 2012, 40(S1):150-152.ZHOU Lijuan, WANG Hui, WANG Wenbo, et al. Parallel K-Means algorithm for massive data[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(S1):150-152. [12] 李仲兴,陈震宇,薛红涛,等. 基于DBNs的轮毂电机机械故障在线诊断方法[J]. 振动.测试与诊断, 2020, 40(4):643-649. LI Zhongxing, CHEN Zhenyu, XUE Hongtao, et al. Online diagnosis method for mechanical fault of in-wheel motor based on DBN[J]. Journal of Vibration, Measurement &. Diagnosis, 2020, 40(4):643-649. [13] 周玉清,梅雪松,姜歌东,等. 基于内置传感器的大型数控机床状态监测技术[J]. 机械工程学报, 2009, 45(4):125-130. ZHOU Yuqing, MEI Xuesong, JIANG Gedong, et al. Technology on large scale numerical control machine tool condition monitoring based on built-in sensors[J]. Journal of Mechanical Engineering, 2009, 45(4):125-130. [14] 李巍华,翁胜龙,张绍辉. 一种萤火虫神经网络及在轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(7):99-106. LI Weihua, WENG Shenglong, ZHANG Shaohui. A firefly neural network and its application in bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(7):99-106. [15] 黄包裕,张永祥,赵磊. 基于布谷鸟搜索算法和最大二阶循环平稳盲解卷积的滚动轴承故障诊断方法[J]. 机械工程学报, 2021, 57(9):99-107. HUANG Baoyu, ZHANG Yongxiang, ZHAO Lei. Research on fault diagnosis method of rolling bearings based on cuckoo search algorithm and maximum second order cyclostationary blind deconvolution[J]. Journal of Mechanical Engineering, 2021, 57(9):99-107. [16] WEN X, SHAO L, XUE Y, et al. A rapid learning algorithm for vehicle classification[J]. Information Sciences, 2015, 295:395-406. |