• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (10): 209-221.doi: 10.3901/JME.2022.10.209

• 运载工程 • 上一篇    下一篇

扫码分享

电动轮驱动汽车空间稳定性底盘协同控制

张利鹏, 段嘉瑶, 苏泰, 任晨辉   

  1. 燕山大学河北省特种运载装备重点实验室 秦皇岛 066004
  • 收稿日期:2021-06-20 修回日期:2022-01-20 出版日期:2022-05-20 发布日期:2022-07-07
  • 通讯作者: 张利鹏(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为智能车辆动力学与控制、新能源汽车复合传动、驾驶员认知与人机共驾。E-mail:evzlp@ysu.edu.cn
  • 作者简介:段嘉瑶,男,1997年出生,硕士研究生。主要研究方向为智能车辆动力学与控制。E-mail:1284517242@qq.com;苏泰,男,1996年出生,硕士研究生。主要研究方向为智能车辆动力学与控制。E-mail:790933324@qq.com;任晨辉,男,1996年出生,硕士研究生。主要研究方向为智能车辆动力学与控制。E-mail:cren_0321@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51775478)。

Chassis Cooperative Control of In-wheel Motors Drive Electric Vehicle for Improving Spatial Stability

ZHANG Lipeng, DUAN Jiayao, SU Tai, REN Chenhui   

  1. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004
  • Received:2021-06-20 Revised:2022-01-20 Online:2022-05-20 Published:2022-07-07

摘要: 电动轮驱动汽车可以独立控制各车轮驱/制动力矩,并能够通过驱动、制动、转向和悬架系统的协同显著提升线控底盘的动力学控制能力,但车辆各子系统控制功能的简单叠加无法发挥整车控制能力。为改善线控底盘的整车稳定性控制效果,提出综合前轮主动转向、四轮差动驱动和悬架主动调控的空间稳定性协同控制方法。搭建整车动力学仿真平台,分析车辆失稳过程特征;构建底盘协同控制架构,计算出车辆状态期望值及主动悬架介入条件,设计出前轮主动转向和四轮差动驱动直接横摆力矩控制权重分配方法;设计出基于模型预测控制的前轮主动转向控制器、基于滑模变结构控制的直接横摆力矩控制器及基于非奇异终端滑模控制的主动悬架控制器并完成了仿真验证。研究表明,提出的底盘协同控制方法在不同附着条件路面上均能保证车辆安全、稳定行驶,所完成研究为线控底盘集成控制策略开发提供了新思路。

关键词: 电动汽车, 轮毂电机, 线控底盘, 车辆动力学, 协同控制

Abstract: In-wheel motors drive electric vehicles can independently control the driving/braking torque of each wheel, and can significantly improves the dynamics control ability of the X-by-wire chassis through the coordination control of the driving, braking, steering and suspension system. However, the simple superposition of the control functions of the various subsystems of the vehicle cannot exert the control performance of the entire vehicle. In order to improve the stability control effect of vehicle with X-by-wire chassis, a coordinated control method for space stability that integrates front-wheel active steering, four-wheel differential drive and active suspension control is proposed. At first, the vehicle dynamics simulation model is built and the characteristics of vehicle instability process is analyzed. Then, the chassis cooperative control framework is constructed, the vehicle state expectation and the intervention conditions of active suspension system are calculated, and the weight distribution method of active front steering and four-wheel differential drive direct yaw moment control is designed. At last, an active front steering controller based on model predictive control, a direct yaw moment controller based on sliding mode control and an active suspension system controller based on non-singular terminal sliding mode control are designed and the simulation verification is completed. The research shows that the proposed chassis cooperative control strategy can ensure the safety and stability of the vehicle on roads with different adhesion conditions. The completed research provides a new idea for the development of X-by-wire chassis integrated control strategy.

Key words: electric vehicle, in-wheel motor, X-by-wire chassis, vehicle dynamics, cooperative control

中图分类号: