[1] HEERTJES M F, VAN DER VELDEN B, OOMEN T. Constrained iterative feedback tuning for robust control of a wafer stage system[J]. IEEE Transactions on Control Systems Technology, 2015, 24(1):56-66. [2] 谭久彬. 超精密测量是支撑光刻机技术发展的基石[J/OL]. 仪器 仪表 学报:1-7[2023-04-20]. http://kns.cnki.net/kcms/detail/11.2179.TH.20230413.1947.002.html. TAN Jiubin. Ultra-precision measurement:The cornerstone of the lithography development[J/OL]. Chinese Journal of Scientific Instrument, 1-7[2023-04-20]. http://kns.cnki.net/kcms/detail/11.2179.TH.20230413.1947.002.html. [3] 杨武,陈培, GAD David. 光刻机产业技术扩散与技术动态演化——对"卡脖子"技术的启示[J]. 中国科技论坛, 2022(9):73-84. YANG Wu, CHEN Pei, GAD David. The study of technology diffusion and technology dynamic evolution in lithography industry——Implications for neck-jamming technologies[J]. Forum on Science and Technology in China, 2022(9):73-84. [4] VAN DER MEYLEN S H, TOUSAIN R L, BOSGRA O H. Fixed structure feedforward controller design exploiting iterative trials:Application to a wafer stage and a desktop printer[J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(5):051006. [5] 刘涛,杨开明,朱煜. 光刻机工件台前馈补偿器参数整定方法[J/OL]. 清华大学学报:1-10[2023-04-20]. https://doi.org/10.16511/j.cnki.qhdxxb.2023.26.002. LIU Tao, YANG Kaiming, ZHU Yu. Parameter tuning method for feedforward controllers of motion stages of lithographic scanners[J/OL]. Journal of Tsinghua University, 1-10[2023-04-20]. https://doi.org/10.16511/j.cnki.qhdxxb.2023.26.002. [6] LI Min, CHEN Taotao, CHENG Rong, et al. Dual-loop iterative learning control with application to an ultraprecision wafer stage[J]. IEEE Transactions on Industrial Electronics, 2022, 69(11):11590-11599. [7] 杨亮亮,袁锐,史伟民,等. 基于数据驱动的自适应最优迭代学习控制研究[J]. 机械工程学报, 2021, 57(17):207-216. YANG Liangliang, YUAN Rui, SHI Weimin, et al. Research on adaptive optimal iterative learning control based on data driven[J]. Journal of Mechanical Engineering, 2021, 57(17):207-216. [8] BLANKEN L, OOMEN T. Multivariable iterative learning control design procedures:From decentralized to centralized, illustrated on an industrial printer[J]. IEEE Transactions on Control Systems Technology, 2019, 28(4):1534-1541. [9] LIAO-MCPHERSON D, BALTA E C, RUPENYAN A, et al. On robustness in optimization-based constrained iterative learning control[J]. IEEE Control Systems Letters, 2022, 6:2846-2851. [10] 薄雨蒙,曹明生,高慧斌. 结合前馈调参与迭代学习的数据驱动控制方法[J]. 控制理论与应用, 2020, 37(6):1367-1376. BO Yumeng, CAO Mingsheng, GAO Huibin. A data-driven control method combining feedforward tuning and iterative learning control[J]. Control Theory & Applications, 2020, 37(6):1367-1376. [11] HOELZLE D J, ALLEYNE A G, JOHNSON A J W. Basis task approach to iterative learning control with applications to micro-robotic deposition[J]. IEEE Transactions on Control Systems Technology, 2010, 19(5):1138-1148. [12] BOLDER J, OOMEN T, KOEKEBAKKER S, et al. Using iterative learning control with basis functions to compensate medium deformation in a wide-format inkjet printer[J]. Mechatronics, 2014, 24(8):944-953. [13] ZHANG Binbin, WU Jun, WANG Liping, et al. A method to realize accurate dynamic feedforward control of a spray-painting robot for airplane wings[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1182-1192. [14] BUTTERWORTH J A, PAO L Y, ABRAMOVITCH D Y. Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems[J]. Mechatronics, 2012, 22(5):577-587. [15] LI Li, LIU Yang, LI Liyi, et al. Kalman-filtering-based iterative feedforward tuning in presence of stochastic noise:With application to a wafer stage[J]. IEEE Transactions on Industrial Informatics, 2019, 15(11):5816-5826. [16] LI Xiaocong, CHEN Silu, TEO C S, et al. Data-based tuning of reduced-order inverse model in both disturbance observer and feedforward with application to tray indexing[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7):5492-5501. [17] SONG Fazhi, LIU Yang, XU Jianxin, et al. Data-driven iterative feedforward tuning for a wafer stage:A high-order approach based on instrumental variables[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4):3106-3116. [18] 杨亮亮,张晖,张华,等. 执行器约束下基于数据驱动的参数化前馈控制器设计[J]. 控制理论与应用, 2022, 39(9):1733-1744. YANG Liangliang, ZHANG Hui, ZHANG Hua, et al. Design of parameterized feedforward controller based on data-driven under actuator constraints[J]. Control Theory & Application, 2022, 39(9):1733-1744. [19] LI Min, XIONG Jiaxi, CHENG Rong, et al. Rational feedforward tuning using variance-optimal instrumental variables method based on dual-loop iterative learning control[J]. IEEE Transactions on Industrial Informatics, 2023, 19(3):2585-2595. [20] HEERTJES M, VAN ENGELEN A. Minimizing cross-talk in high-precision motion systems using data-based dynamic decoupling[J]. Control Engineering Practice, 2011, 19(12):1423-1432. [21] HEERTJES M, HENNEKENS D, STEINBUCH M. MIMO feed-forward design in wafer scanners using a gradient approximation-based algorithm[J]. Control Engineering Practice, 2010, 18(5):495-506. [22] LIU Qi, XIAO Juliang, YANG Xu, et al. An iterative tuning approach for feedforward control of parallel manipulators by considering joint couplings[J]. Mechanism and Machine Theory, 2019, 140:159-169. [23] BUTLER H. Position control in lithographic equipment[J]. IEEE Control Systems Magazine, 2011, 31(5):28-47. [24] 刘杨,李理,陈思文,等. 面向IC光刻的超精密运动台控制技术[J]. 激光与光电子学进展, 2022, 59(9):233-253. LIU Yang, LI Li, CHEN Siwen, et al. Ultra-precision motion stage control technology for IC lithography[J]. Laser & Optoelectronics Progress, 2022, 59(9):233-253. [25] JIANG Yi, YANG Kaiming, ZHU Yu, et al. Optimal feedforward control with a parametric structure applied to a wafer stage[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2014, 228(2):97-106. [26] VAN DE WIJDEVEN J, BOSGRA O H. Using basis functions in iterative learning control:Analysis and design theory[J]. International Journal of Control, 2010, 83(4):661-675. [27] KOSTIC D, VAN ZUTVEN P, SMULDERS P, et al. Flatbed printer development-from model-based dynamics analysis to motion control performance improvement[J]. Mikroniek, 2015, 5:38-45. [28] WANG Youqing, GAO Furong, DOYLE F J. Survey on iterative learning control, repetitive control, and run-to-run control[J]. Journal of Process Control, 2009, 19(10):1589-1600. [29] HEERTJES M, TSO T. Nonlinear iterative learning control with applications to lithographic machinery[J]. Control Engineering Practice, 2007, 15(12):1545-1555. [30] 姜龙滨,丁润泽,丁晨阳,等. 光刻机运动台控制方法研究进展[J]. 激光与光电子学进展, 2022, 59(9):45-57. JIANG Longbin, DING Runze, DING Chenyang, et al. Research progress on stage control methods for a lithography machine[J]. Laser & Optoelectronics Progress, 2022, 59(9):45-57. [31] 穆海华,周云飞,严思杰,等. 超精密点对点运动4 阶轨迹规划算法研究[J]. 中国机械工程, 2007, 235(19):2346-2350, 2354. MU Haihua, ZHOU Yunfei, YAN Sijie, et al. Research on fourth-order profile planning algorithm for high accuracy point-to-point motion system[J]. China Mechanical Engineering, 2007, 235(19):2346-2350, 2354. |