[1] National Natural Science Foundation of China. Research report on the strategic development of disciplines of machinery and manufacturing science[M]. Beijing:Science Press, 2006. [2] 熊万里,原帅,胡灿,等. 液体静压主轴的回转精度规律及其极限预测[J]. 机械工程学报, 2021, 57(13):70-82. XIONG Wanli, YUAN Shuai, HU Can, et al. The law of rotation accuracy of hydrostatic spindle and its limit prediction[J]. Journal of Mechanical Engineering, 2021, 57(13):70-82. [3] ZHANG P, PENG Y. Influence of rotation speed on motion accuracy of hydrostatic journal bearing[J]. Nonlinear Dynamics, 2021, 105(4):2959-2980. [4] YUAN J, LYU B, HANG W, et al. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(2):158-180. [5] 袁巨龙,张飞虎,戴一帆,等. 超精密加工领域科学技术发展研究[J]. 机械工程学报, 2010, 46(15):161-177. YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Research on the development of science and technology in the field of ultra-precision machining[J]. Journal of Mechanical Engineering, 2010, 46(15):161-177. [6] MAKSOUD T M A, ATIA M R, KOURA M M. Applications of artificial intelligence to grinding operations via neural networks[J]. Machining Science and Technology, 2003, 7(3):361-387. [7] KARKALOS N E, MARKOPOULOS A P, DOSSIS M F. Application of statistical and soft computing techniques for the prediction of grinding performance[J]. Journal of Robotics and Mechanical Engineering Research, 2015, 1(2):6-16. [8] WANG Y, LIU Y, CHU X, et al. Calculation model for surface roughness of face gears by disc wheel grinding[J]. International Journal of Machine Tools and Manufacture, 2017, 123:76-88. [9] ZHANG Y, KANG R, GAO S, et al. A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel, workpiece characteristics, and grinding parameters[J]. Precision Engineering, 2021, 72:461-468. [10] PRATAP A, PATRA K. Analytical cutting force modelling of micro-slot grinding considering tool-workpiece interactions on both primary and secondary tool surfaces[J]. Journal of Manufacturing Science and Engineering, 2022, 144(2):021001:1-18 [11] 金光迪,高玉飞,唐元超,等. 磨削力建模研究进展[J]. 工具技术, 2022, 56(10):12-16. JIN Guangdi, GAO Yufei, TANG Yuanchao, et al. Research progress of grinding force modeling[J]. Tool Technology, 2022, 56(10):12-16. [12] 陈根余,殷赳,朱智超,等. 正前角金刚石磨粒磨削钛合金仿真与试验研究[J]. 湖南大学学报, 2021, 48(12):70-78. CHEN Genyu, YIN Jiu, ZHU Zhichao, et al. Simulation and experimental study on grinding titanium alloy with diamond abrasive grains with positive front angle[J]. Journal of Hunan University, 2021, 48(12):70-78 [13] ZHANG Y, WU T, LI C, et al. Numerical simulations of grinding force and surface morphology during precision grinding of leucite glass ceramics[J]. International Journal of Mechanical Sciences, 2022, 231:107562. [14] 宋慈,焦黎,王西彬,等. 面向轴孔类零件圆度误差评定的改进式最小区域圆法[J]. 中国机械工程, 2022, 33(9):1090-1097, 1114. SONG Ci, JIAO Li, WANG Xibin, et al. An improved minimum area circle method for evaluating roundness error of shaft hole parts[J]. China Mechanical Engineering, 2022, 33(9):1090-1097, 1114. [15] 蔡朕,王景良,吕梦樊,等. 基于改进布谷鸟搜索算法的圆度误差评定[J]. 组合机床与自动化加工技术, 2020, 557(7):40-44. CAI Zhen, WANG Jingliang, LÜ Mengfan, et al. Evaluation of roundness error based on improved cuckoo bird search algorithm[J]. Combined Machine Tool and Automation Processing Technology, 2020, 557(7):40-44. [16] 张志永,郑鹏,刘栋梁. 基于LSSVM的磨加工主动量仪圆度误差在线评定方法研究[J]. 机床与液压, 2022, 50(16):52-57. ZHANG Zhiyong, ZHENG Peng, LIU Dongliang. Research on online evaluation method for roundness error of grinding active measuring instruments based on LSSVM[J]. Machine Tool and Hydraulic, 2022, 50(16):52-57. [17] 熊万里,陈建华,丁文祥,等. 轴颈外圆磨削成圆过程的双转子耦合模型及仿真算法[J]. 机械工程学报, 2019, 55(21):170-177. XIONG Wanli, CHEN Jianhua, DING Wenxiang, et al. Double-rotor coupling model and simulation algorithm for the process of journal cylindrical grinding rounding[J]. Journal of Mechanical Engineering, 2019, 55(21):170-177. [18] XIONG W, DING W, CHEN J, et al. A novel double rotor coupling model for inner bore grinding process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106:3357-3366. [19] ZENG X, XIONG W, SUN W, et al. Research on double-rotor dynamic grinding model and simulation algorithm for crankshaft main journal[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114:3391-3400. [20] 陈世平,廖林清,侯智,等. 高速切削刀具系统动平衡研究与分析[J]. 机床与液压, 2005(10):32-33, 62. CHEN Shiping, LIAO Linqing, HOU Zhi, et al. Research and analysis of dynamic balance of high-speed cutting tool system[J]. Machine Tool and Hydraulic, 2005(10):32-33, 62 [21] CHIU N, MALKIN S. Computer simulation for cylindrical plunge grinding[J]. Ann CIRP, 1993, 42(1):383-387. [22] 冯明,周程瑜,张坤,等. 回转误差测试中系统噪声分离技术[J]. 北京航空航天大学学报, 2020, 46(4):666-673. FENG Ming, ZHOU Chengyu, ZHANG Kun, et al. System noise separation technology in rotation error test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4):666-673 [23] 吕铭,陈蔚芳,苏川,等. 基于EEMD与频域分析的主轴回转误差评定[J]. 组合机床与自动化加工技术, 2021, 563(1):61-65. LÜ Ming, CHEN Weifang, SU Chuan, et al. Spindle rotation error evaluation based on EEMD and frequency domain analysis[J]. Modular Machine Tool and Automatic Processing Technology, 2021, 563(1):61-65 [24] LIU G. Improving wilson-θ and newmark-β methods for quasi-periodic solutions of nonlinear dynamical systems[J]. Journal of Applied Mathematics and Physics, 2018, 6(8):1625. [25] 金守峰,范荻,陈蓉,等. 面向回转类零件圆度的机器视觉测量方法与试验[J]. 机械设计与研究, 2016, 32(4):117-119, 124. JIN Shoufeng, FAN Di, CHEN Rong, et al. Machine vision measurement method and test for roundness of rotary parts[J]. Mechanical Design and Research, 2016, 32(4):117-119, 124 [26] 迟玉伦,李郝林. 切入式外圆磨削接触刚度与固有频率研究[J]. 中国机械工程, 2016, 27(10):1294-1298, 1326. CHI Yulun, LI Haolin. Research on contact stiffness and natural frequency of cut-in cylindrical grinding[J]. China Mechanical Engineering, 2016, 27(10):1294-1298, 1326 |