[1] 王振忠,施晨淳,张鹏飞,等.先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8):23-56. WANG Zhenzhong, SHI Chenchun, ZHANG Pengfei, et al. Recent progress of advanced optical manufacturing technology[J]. Journal of Mechanical Engineering, 2021, 57(8):23-56. [2] LI M, JIN L, WANG J. A new MCDM method combining QFD with TOPSIS for knowledge management system selection from the user's perspective in intuitionistic fuzzy environment[J]. Applied Soft Computing, 2014, 21:28-37. [3] 王卓,吴宇列,戴一帆,等. 光学材料磨削加工亚表面损伤层深度测量及预测方法研究[J]. 航空精密制造技术, 2007, 43(5):1-5. WANG Zhuo, WU Yulie, DAI Yifan, et al. Research on measurement and prediction methods of subsurface damage depth of optical materials in grinding process[J]. Aviation Precision Manufacturing Technology, 2007, 43(5):1-5. [4] NIE X, LI S, DAI Y, et al. A new polishing process for large-aperture and high-precision aspheric surface[C]//Pacific Rim Laser Damage 2013:Optical Materials for High Power Lasers. SPIE, 2013, 8786:116-122. [5] FANARA C, SHORE P, NICHOLLS J R, et al. A new reactive atom plasma technology (RAPT) for precision machining:The etching of ULE® surfaces[J]. Advanced Engineering Materials, 2006, 8(10):933-939. [6] WANG C, YANG W, WANG Z, et al. Dwell-time algorithm for polishing large optics[J]. Applied Optics, 2014, 53(21):4752-4760. [7] WANG T, HUANG L, KANG H, et al. RIFTA:A robust iterative fourier transform-based dwell time algorithm for ultra-precision ion beam figuring of synchrotron mirrors[J]. Scientific Reports, 2020, 10(1):8135. [8] JIAO C, LI S, XIE X. Algorithm for ion beam figuring of low-gradient mirrors[J]. Applied Optics, 2009, 48(21):4090-4096. [9] ZHANG Y, FANG F, HUANG W, et al. Dwell time algorithm based on bounded constrained least squares under dynamic performance constraints of machine tool in deterministic optical finishing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021:1-13. [10] CASTELLI M, JOURDAIN R, MCMEEKING G, et al. Initial strategies for 3D RAP processing of optical surfaces based on a temperature adaptation approach[C]//Proceedings of the 36th International MATADOR Conference. Springer London, 2010:569-572. [11] JOURDAIN R, CASTELLI M, YU N, et al. Estimation of the power absorbed by the surface of optical components processed by an inductively coupled plasma torch[J]. Applied Thermal Engineering, 2016, 108:1372-1382. [12] MASQUERE M, FRETON P, GONZALEZ J J. Theoretical study in two dimensions of the energy transfer between an electric arc and an anode material[J]. Journal of Physics D:Applied Physics, 2007, 40(2):432. [13] MEISTER J, BÖHM G, EICHENTOPF I M, et al. Simulation of the substrate temperature field for plasma assisted chemical etching[J]. Plasma Processes and Polymers, 2009, 6(S1):S209-S213. [14] MEISTER J, ARNOLD T. New process simulation procedure for high-rate plasma jet machining[J]. Plasma Chemistry and Plasma Processing, 2011, 31:91-107. [15] CASTELLI M, JOURDAIN R, MORANTZ P, et al. Rapid optical surface figuring using reactive atom plasma[J]. Precision Engineering, 2012, 36(3):467-476. [16] 季鹏. 大气感应耦合等离子体射流加工中热影响及对策研究[D]. 哈尔滨:哈尔滨工业大学, 2018. JI Peng. Research on thermal effect and countermeasure of atmospheric inductively coupled plasma processing[D]. Harbin:Harbin Institute of Technology, 2018. [17] DAI Z, XIE X, CHEN H, et al. Non-linear compensated dwell time for efficient fused silica surface figuring using inductively coupled plasma[J]. Plasma Chemistry and Plasma Processing, 2018, 38:443-459. [18] SU X, ZHANG P, LIU K, et al. Fabrication of continuous phase plate using atmospheric pressure plasma processing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105:4559-4570. [19] JI P, LI D, SU X, et al. Optimization strategy for the velocity distribution based on tool influence function non-linearity in atmospheric pressure plasma processing[J]. Precision Engineering, 2020, 65:269-278. [20] DONG L, JI Y, LIU W, et al. Diagnostics and application of an atmospheric pressure plasma generated with a hollow needle-plate dielectric barrier discharge[J]. IEEE Transactions on Plasma Science, 2012, 40(6):1701-1706. [21] 辛强. 大气感应耦合等离子体射流特性与加工表面演变机理研究[D]. 哈尔滨:哈尔滨工业大学, 2017. XIN Qiang. Research on characteristics of the plasma jets and surface evolution mechanism of atmospheric inductively coupled plasma processing[D]. Harbin:Harbin Institute of Technology, 2017. [22] WU B, ZHANG Y, YI R, et al. Tuning the plasma etching mode for the atomic-scale smoothing of single-crystal silicon[J]. The Journal of Physical Chemistry Letters, 2022, 13(36):8580-8585. [23] ZHOU H, BENNETT A, CASTELLI M, et al. Design of a motorised plasma delivery system for ultra-precision large optical fabrication[J]. International Journal of Extreme Manufacturing, 2020, 2(4):45301. [24] YU N, JOURDAIN R, CASTELLI M, BENNETT A, et al. Investigation of a plasma delivery system for optical figuring process[J]. Chinese Journal of Aeronautics, 2021, 34(4):518-525. [25] ZHDANOV V P. Arrhenius parameters for rate processes on solid surfaces[J]. Surface Science Reports, 1991, 12(5):185-242. [26] 邓伟杰,郑立功,史亚莉,等. 基于线性代数和正则化方法的驻留时间算法[J]. 光学精密工程, 2007, 15(7):1009-1015. DENG Weijie, ZHENG Ligong, SHI Yali, et al. Dwell time algorithm based on matrix algebra and regularization method[J]. Optics and Precision Engineering, 2007, 15(7):1009-1015. [27] LUO F Y, ZHOU Y F, YIN J. A universal velocity profile generation approach for high-speed machining of small line segments with look-ahead[J]. The International Journal of Advanced Manufacturing Technology, 2007, 35:505-518. |