机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 264-276.doi: 10.3901/JME.2023.14.264
温玉颖, 张晓新, 燕青芝
收稿日期:
2022-07-20
修回日期:
2023-01-15
出版日期:
2023-07-20
发布日期:
2023-08-16
通讯作者:
燕青芝(通信作者),女,1966年出生,教授,博士研究生导师。主要研究方向为粉末冶金与先进陶瓷。E-mail:qzyan@ustb.edu.cn
作者简介:
温玉颖,女,1996年出生。主要研究方向为高铁制动盘与闸片材料。E-mail:yuyingwen1101@126.com
基金资助:
WEN Yuying, ZHANG Xiaoxin, YAN Qingzhi
Received:
2022-07-20
Revised:
2023-01-15
Online:
2023-07-20
Published:
2023-08-16
摘要: 盘式制动是高铁制动的重要方式。其中,制动盘作为盘式制动的重要部件,在严苛的运行工况和恶劣环境下存在着磨损、热斑、热裂纹等失效形式。总结制动盘的三种失效形式及其原因,并从结构改进、材料改进、表面改性三个方面对制动盘改进进行综述。采用通风式制动盘和浮动式结构的闸片相互配合能够增强散热,使用高导热材料进行制备,以及减少制造过程中的缺陷,能够提高制动盘的抗热震性和耐磨性。除此之外,梳理出通过表面改性提高制动盘综合性能、稳定制动系统的两个方向,即以激光熔覆和热喷涂的方式制备表面强化层,对通过摩擦试验评估涂层还需开展的工作进行展望,以期有助于促进制动盘表面改性技术手段和测试方法的发展。
中图分类号:
温玉颖, 张晓新, 燕青芝. 高铁制动盘失效原因和改进对策[J]. 机械工程学报, 2023, 59(14): 264-276.
WEN Yuying, ZHANG Xiaoxin, YAN Qingzhi. Failure Causes and the Improvement Countermeasures on High-speed Brake Disc[J]. Journal of Mechanical Engineering, 2023, 59(14): 264-276.
[1] 任慧芳. 高速列车制动盘传热特性及热负荷的数值研究[D]. 兰州:兰州交通大学,2019. REN Huifang. Numerical study on heat transfer characteristics and heat load of brake disc of high speed train[D]. Lanzhou:Lanzhou Jiaotong University,2019. [2] 傅志寰. 关于中国高铁发展的思考[R]. 北京:中国科学技术信息研究所多功能厅,2019. FU Zhihuan. Thoughts on the development of high speed railway in China[R]. Beijing:multi function department of China Institute of science and technology information,2019. [3] 耿凯. 高铁制动盘应力分析及其损伤机理研究[D]. 北京:北京交通大学,2018. GENG Kai. Research on stress analysis and damage mechanism of CRH brake disc[D]. Beijing:Beijing Jiaotong University,2018. [4] 杨强. 列车制动盘温度场和应力场仿真与分析[D]. 北京:北京交通大学,2009. YANG Qiang. Simulation and analysis of temperature field and stress field of train brake disc[D]. Beijing:Beijing Jiaotong University,2009. [5] 桑兴华. 轨道车辆制动盘磨粒磨损特性及机理研究[D]. 大连:大连交通大学,2018. SANG Xinghua. Study on abrasive wear characteristics and mechanism of rail vehicle brake disc[D]. Dalian:Dalian Jiaotong University,2018. [6] 李继山. 高寒动车组制动盘异常磨耗原因分析[J]. 铁道机车车辆,2016,36(2):20-23. LI Jishan. Cause analysis on abnormal wear of brake disc of high cold EMU[J]. Railway Locomotive & CAR,2016,36(2):20-23 [7] 马元明. 高速列车制动盘激光熔覆工艺及性能研究[D]. 成都:西南交通大学,2017. MA Yuanming. Research on laser cladding process and performance of brake disc material for high-speed train[D]. Chengdu:Southwest Jiaotong University,2017. [8] Kim J G,Kwon S T,Yoon S C,et al. Infrared thermographic analysis of railway brake disc during braking[J]. Key Engineering Materials,2012,488:597-600. [9] 张谦,常保华,王力,等. 高速列车锻钢制动盘温度场特征的实验研究[J]. 中国铁道科学,2007(1):81-5. ZHANG Qian,Chang Baohua,Wang Li,et al. Experimental study on temperature field characteristics of forged steel brake disc for high-speed train[J]. China Railway Science,2007(1):81-85. [10] Panier S,Dufrénoy P,Weichert D. An experimental investigation of hot spots in railway disc brakes[J]. Wear,2004,256(7-8):764-773. [11] 杨智勇,李志强,李卫京,等. 制动盘摩擦面热损伤的形成机理分析[J]. 铁道机车车辆,2012,32(3):14-19. Yang Zhiyong,Li Zhiqiang,Li Weijing,et al. Formation mechanism of thermal damage on friction surface of brake disc[J]. Railway Locomotive & CAR,2012,32(3):14-19. [12] 森久史,彭惠民. 制动盘的热疲劳原因与对策[J]. 国外机车车辆工艺,2009(3):38-41. Mori Jiushi,Peng Huimin. Causes and countermeasures of brake disc thermal fatigue[J]. Foreign Locomotive & Rolling Stock Technology,2009(3):38-41. [13] MORI H,TOMINAGA T,MATSUI M,et al. Observation of thermal cracks of microstructural size scale by thermal effect during wear in Ni-Cr-Mo alloy seel brake discs[J]. Journal of the Japan Institute of Metals,2006,70(10):785-789. [14] 姚远,张红军,刘进华. 高速机车轴盘制动装置温度场分析[J]. 机车电传动,2008(1):24-27. Yao Yuan,Zhang Hongjun,Liu Jinhua. Analysis of temperature field of axle disc brake device of high-speed locomotive[J]. Electric drive of locomotive,2008(1):24-27. [15] 戴鑫亮,王伯铭. ULF轻轨列车制动盘温度场及热应力分析[J]. 机车电传动,2018(3):90-95. Dai Xinliang,Wang Boming. Analysis of temperature field and thermal stress of brake disc of ULF light rail train[J]. Electric Drive for Locomotives,2018(3):90-95. [16] 夏毅敏,暨智勇,姚萍屏. 高速动车组制动盘瞬态温度场及热应力场分析[J]. 郑州大学学报(工学版),2009,30(3):75-78. Xia Yimin,Ji Zhiyong,Yao Pingping. Analysis of transient temperature field and thermal stress field of high-speed EMU brake disc[J]. Journal of Zhengzhou University(Engineering Edition),2009,30(3):75-78. [17] 乔峰,李和平,杨伟君,等. 高寒型动车组制动系统[J]. 铁道机车车辆,2011,31(5):108-110. Qiao Feng,LI Heping,Yang Weijun,et al. Brake system of high cold EMU[J]. Railway Locomotive & CAR,2011,31(5):108-110. [18] 李继山,李和平,林祜亭. 高速列车制动盘裂纹现状调查分析[J]. 铁道机车车辆,2005(6):3-5. Li Jishan,Li Heping,Lin Huting. Investigation and analysis of high-speed train brake disc crack[J]. Railway Locomotive & CAR,2005(6):3-5 [19] 李明. 高速列车制动盘热-机耦合数值模拟[D]. 成都:西南交通大学,2007. LI Ming. Coupled thermo-mechanical numerical simulation of brake discs for high-speed trains[D]. Chengdu:Southwest Jiaotong University,2007. [20] 李继山,韩晓辉,范荣巍. 高速列车制动盘残余应力数值仿真及试验验证[J]. 铁道机车车辆,2010,30(6):8-10,85. Li Jishan,Han Xiaohui,fan Rongwei. Numerical simulation and experimental verification of residual stress of high-speed train brake disc[J]. Railway Locomotive & CAR,2010,30(6):8-10,85. [21] 李继山. 高速列车合金锻钢制动盘寿命评估研究[D]. 北京:铁道部科学研究院,2006. LI Jishan. Study on life estimation for alloy forging steel brake disc of high-speed train[D]. Beijing:China Academy of Railway Sciences,2006. [22] 李志强. 高速列车制动盘热斑特征及裂纹萌生扩展机制研究[D]. 北京:北京交通大学,2016. LI Zhiqiang. Research on characteristics of hot spots and initiation and propagation mechanisms of cracks of brake discs used for high-speed trains[D]. Beijing:Beijing Jiaotong University,2016. [23] 石晓玲,李强,薛海,等. 高速列车锻钢制动盘多裂纹间作用机制研究[J]. 铁道学报,2016,38(3):36-41. Shi Xiaoling,Li Qiang,Xue Hai,et al. Study on mechanism of multiple cracks in forged steel brake disc of high-speed train[J]. Journal of the China Railway Society,2016,38(3):36-41. [24] Wang Zhizhong,Han Jianmin,Domblesky J P,et al. Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc[J]. Wear,2019,428:45-54. [25] Yang Zhiyong,Han Jianmin,LI Weijing,et al. Analyzing the mechanisms of fatigue crack initiation and propagation in CRH EMU brake discs[J]. Engineering Failure Analysis,2013,34:121-128. [26] 汤忖江,陈蕴博,左玲立,等. 高速列车制动盘材质应用现状和研究进展[J]. 材料导报,2018,32(增刊1):443-448. Tang Wujiang,Chen Yunbo,Zuo Lingli,et al. Application status and research progress of brake disc materials for high-speed trains[J]. Materials Reports,2018,32(Suppl.1):443-448. [27] 王磊,潘祺睿,陈辉. 和谐型电力机车用制动摩擦副结构设计[J]. 铁道运营技术,2018,24(4):1-3,9. Wang Lei,pan Qirui,Chen Hui. Structural design of brake friction pair for harmonious electric locomotive[J]. Railway Operation Technology,2018,24(4):1-3,9. [28] 王皓,高飞,农万华,等. 闸片结构对制动盘温度场及热应力场的影响[J]. 铁道机车车辆,2010,30(4):29-32. Wang Hao,Gao Fei,Nong Wanhua,et al. Effect of brake pad structure on temperature field and thermal stress field of brake disc[J]. Railway Locomotive & CAR,2010,30(4):29-32. [29] 孙超. 摩擦块排布对制动盘温度场及热应力场的影响[D]. 大连:大连交通大学,2012. SUN Chao. Study on the effect of the spatial arrangement of friction blocks on temperature field and thermal stress field of brake disc[D]. Dalian:Dalian Jiaotong University,2012. [30] 农万华,高飞,符蓉,等. 摩擦块形状对制动盘摩擦温度及热应力分布的影响[J]. 润滑与密封,2012,37(8):52-56. Nong Wanhua,Gao Fei,Fu Rong,et al. Effect of friction block shape on friction temperature and thermal stress distribution of brake disc[J]. Lubrication Engineering,2012,37(8):52-56. [31] 农万华,符蓉,韩晓明. 优化结构闸片对制动盘温度及热应力的影响[J]. 大连交通大学学报,2012,33(4):62-65. Nong Wanhua,Fu Rong,Han Xiaoming. Effect of optimized brake pad on temperature and thermal stress of brake disc[J]. Journal of Dalian Jiaotong University,2012,33(4):62-65. [32] 农万华. 基于闸片结构的列车盘形制动温度和应力的数值模拟及试验研究[D]. 大连:大连交通大学,2012. NONG Wanhua. Numerical simulation and experimental study of temperature and stress of the train disc brake based on the brake pads structure[D]. Dalian:Dalian Jiaotong University,2012. [33] 王德民. 通风式锻钢制动盘锻造工艺及组织性能研究[D]. 北京:北京交通大学,2019. WANG Demin. Study on forging technology and microstructure and properties of ventilated forged steel brake disc[D]. Beijing:Beijing Jiaotong University,2019. [34] 宋宝韫,高飞,陈吉光,等. 高速列车制动盘材料的研究进展[J]. 中国铁道科学,2004(4):12-18. Song Baokai,Gao Fei,Chen Jiguang,et al. Research progress of brake disc materials for high speed trains[J]. China Railway Science,2004(4):12-18. [35] 王磊,朱松,潘祺睿,等. 列车盘形制动装置技术现状及发展趋势[J]. 机车车辆工艺,2015(6):10-13. Wang Lei,Zhu song,pan Qirui,et al. Technical status and development trend of train disc brake[J]. Locomotive & Rolling Stock Technology,2015(6):10-13. [36] 周敏云,韩建民,芦金宁,等. 铁道车辆制动盘材料的K指标分析[J]. 铁道学报,2002(1):119-120. Zhou Minyun,Han Jianmin,Lu Jinning,et al. K index analysis of brake disc materials for railway vehicles[J]. Journal of the China Railway Society,2002(1):119-120. [37] 王文静,谢基龙,李强,等. SiCp_A356复合材料制动盘应力场数值模拟与热疲劳寿命预测[J]. 机械工程学报,2007(6):127-132. Wang Wenjing,Xie Jilong,Li Qiang,et al. Numerical simulation of stress field and prediction of thermal fatigue life of SiCp_A356 composite Brake disc[J]. Journal of Mechanical Engineering,2007(6):127-132. [38] 徐济民,张海泉,陈强,等. 快速列车制动盘安全评定与寿命预测模型[J]. 清华大学学报(自然科学版),2006(5):609-612. Xu Jimin,Zhang Haiquan,Chen Qiang,et al. Safety evaluation and life prediction model of brake discs for fast trains[J]. Journal of Tsinghua University (Natural Science Edition),2006(5):609-612. [39] 钱坤才,张俊新. 非金属夹杂物引起铸钢制动盘早期裂纹的研究[J]. 铸造,2014,63(11):1161-1164. Qian Kuncai,Zhang Junxin. Study on early cracks of cast steel brake disc caused by non-metallic inclusions[J]. Foundry,2014,63(11):1161-1164. [40] 吴射章,陈鑫,潘尹,等. 铸钢轴装制动盘热裂纹形成和扩展机理[J]. 机车车辆工艺,2018(6):33-35. Wu Shezhang,Chen Xin,pan Yin,et al. Hot crack formation and propagation mechanism of cast steel axle mounted brake disc[J]. Locomotive & Rolling Stock Technology,2018(6):33-35. [41] 王飞,王风洲. 高速列车铸钢制动盘的组织与性能[J]. 金属热处理,2018,43(2):133-136. Wang Fei,Wang Fengzhou. Microstructure and properties of cast steel brake disc for high-speed train[J]. Heat Treatment of Metals,2018,43(2):133-136. [42] Harada N,Takuma M,Tsujikawa M,et al. Effects of V addition on improvement of heat shock resistance and wear resistance of Ni-Cr-Mo cast steel brake disc[J]. Wear,2013,302(1-2):1444-1452. [43] 王东生,田宗军,沈理达,等. 激光熔覆技术研究现状及其发展[J]. 应用激光,2012,32(6):538-544. Wang Dongsheng,Tian Zongjun,Shen Lida,et al. Research status and development of laser cladding technology[J]. Applied Laser,2012,32(6):538-544. [44] Liu Yan,Wu Ying,Ma Yuanming,et al. High temperature wear performance of laser cladding Co06 coating on high-speed train brake disc[J]. Applied Surface Science,2019,481:761-766. [45] 王玉乔. 激光熔覆铁基合金粉末制备高速列车制动盘的工艺研究[D]. 石家庄:石家庄铁道大学,2018. WANG Yuqiao. Study on process technology of laser cladding iron-based alloy powder for high-speed trains brake disc[D]. Shijiazhuang:Shijiazhuang Tiedao University,2018. [46] 王玉乔,郭腾达,齐海波. 微量合金元素对激光熔覆高速列车制动盘组织的影响[J]. 应用激光,2017,37(6):825-828. Wang Yuqiao,Guo Tengda,Qi Haibo. Effect of trace alloying elements on microstructure of laser cladding high-speed train brake disc[J]. Applied Laser,2017,37(6):825-828. [47] 郭腾达. 激光熔覆镍基合金粉末制备高速列车制动盘的工艺研究[D]. 石家庄:石家庄铁道大学,2017. GUO Tengda. Study on process technology of laser cladding nickel-based alloy powder for high-speed trains brake disc[D]. Shijiazhuang:Shijiazhuang Jiaotong University,2017. [48] 赵龙志,刘武,刘德佳,等. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程,2017,45(3):88-94. Zhao Longzhi,Liu Wu,Liu Dejia,et al. Effect of SiC content on microstructure and wear resistance of laser cladding SiC/Ni60A composite coating[J]. Materials Engineering,2017,45(3):88-94. [49] 刘武. 制动盘用激光熔覆CNTs/SiC/Ni60A高温合金混杂复合涂层制备研究[D]. 南昌:华东交通大学,2016. LIU Wu. Study on the brake disc composite coating of CNTs/SiC/Ni60A superalloy by laser cladding[D]. Nanchang:East China Jiaotong University,2016. [50] 李深. 激光熔覆ZrV2O7/SiC/Ni复合涂层[D]. 南昌:华东交通大学,2016. LI Shen. Laser cladding ZrV2O7/SiC/Ni composite coating[D]. Nanchang:East China Jiaotong University,2016. [51] 皇甫立志. 激光熔覆稀土Er掺杂FeAlSi/Al复合涂层研究[D]. 南昌:华东交通大学,2016. HUANGFU Lizhi. Study on adding Er to FeAlSi/Al composite coating by laser cladding[D]. Nanchang:East China Jiaotong University,2016. [52] 曹振飞,齐海波,林齐,等. 一种高速列车制动盘高熵合金耐磨层组织和性能的研究[J]. 表面技术,2018,47(8):30-35. Cao Zhenfei,Qi Haibo,Lin Qi,et al. Study on microstructure and properties of high entropy alloy wear resistant layer for high-speed train brake disc[J]. Surface Technology,2018,47(8):30-35. [53] 余敏,张鸿羽,曹开,等. 激光熔覆在高速列车上的应用研究现状[J]. 表面技术,2020,49(10):12-20,38. Yu Min,Zhang Hongyu,Cao Kai,et al. Application of laser cladding on high-speed train[J]. Surface Technology,2020,49(10):12-20,38. [54] 马光,王国刚,孙冬柏,等. 热喷涂在铁路行业的应用现状及前景展望[J]. 铁道学报,2007(1):95-101. Ma Guang,Wang Guogang,sun Dongbai,et al. Application status and prospect of thermal spraying in railway industry[J]. Journal of the China Railway Society,2007(1):95-101. [55] 易茂中,韩志海,陈华,等. 等离子喷涂铁-镍-钴-碳化钨涂层制动摩擦特性的研究[J]. 摩擦学学报,1996(2):55-60. Yi Maozhong,Han Zhihai,Chen Hua,et al. Study on braking friction characteristics of plasma sprayed Fe-Ni-Co-WC coating[J]. Journal of Tribology,1996(2):55-60. [56] BARTYS H,GUERIN J D,WATREMEZ M,et al. A comparative study of plasma sprayed coatings on railway brake discs[J]. Surface Engineering,2001,17(2):127-130. [57] BEKİR G,İBRAHİM M. Tribological properties of brake discs coated with Cr2O3-40% TiO2 by plasma spraying[J]. Surface Review and Letters,2019,26(10):1950075. [58] BRICOUT J,郭晓燕. 制动用材料[J]. 国外机车车辆工艺,2004(1):25-31. Bricout J,Guo Xiaoyan. Brake materials[J]. Foreign Locomotive & Rolling Stock Technology,2004(1):25-31. [59] 符蓉. 高速列车制动材料[M]. 北京:化学工业出版社,2011. Fu Rong. Brake materials for high-speed trains[M]. Beijing:Chemical Industry Press,2011. [60] Watremez M,Bricout J P,Marguet B,et al. Friction,temperature,and wear analysis for ceramic coated brake disks[J]. Journal of Tribology,1996,118:457. [61] Kiliçaslan I,Samur R,Demir A. Investigation of the coatings applied onto brake discs on disc-brake pad pair[J]. Metalurgija,2009,48(3):161-166. [62] Wahlstrom J,Lyu Y,Matjeka V,et al. A pin-on-disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions[J]. Wear,2017(384):124-130. [63] Öz A,Gürbüz H,Yakut A K,et al. Braking performance and noise in excessive worn brake discs coated with HVOF thermal spray process[J]. Journal of Mechanical Science and Technology,2017,31(2):535-543. [64] Priyan M S,Azad A,Araffath S Y. Influence of HVOF parameters on the wear resistance of Cr3C2-NiCr coating[J]. Journal of Materials Science & Surface Engineering,2016,4(2):355-359. [65] Federici M,Menapace C,Moscatelli A,et al. Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material[J]. Wear,2016(368):326-334. [66] Federici M,Menapace C,Moscatelli A,et al. Pin-on-disc study of a friction material dry sliding against HVOF coated discs at room temperature and 300℃[J]. Tribology International,2017(115):89-99. |
[1] | 朱海燕, 黎洁, 肖乾, 陈道云. 轮轨激励对高速列车轴装制动盘热-机耦合疲劳分析[J]. 机械工程学报, 2024, 60(4): 409-419. |
[2] | 张奇祥, 王金湘, 张伊晗, 张荣林, 靳立强, 殷国栋. 智能电动汽车线控制动关键技术与研究进展[J]. 机械工程学报, 2024, 60(10): 339-365. |
[3] | 陈志成, 朱冰, 赵健, 吴坚. 考虑非线性特性的电控助力制动系统多闭环压力控制策略[J]. 机械工程学报, 2023, 59(4): 190-198. |
[4] | 张庆贺, 卢纯, 吴元科, 赵婧, 莫继良. 基于接触压力分布和非均匀热流密度的列车制动盘热机耦合分析[J]. 机械工程学报, 2023, 59(3): 165-175. |
[5] | 郭磊, 刘检华, 夏焕雄, 敖晓辉. 精密仪表用铝合金瓷质阳极氧化表面粘接性能研究[J]. 机械工程学报, 2023, 59(12): 236-244. |
[6] | 周素霞, 童欣, 孙宇铎, 邵京. 基于相变储热原理的高速列车制动盘散热研究[J]. 机械工程学报, 2022, 58(6): 202-210. |
[7] | 余卓平, 史彪飞, 卓桂荣, 熊璐, 舒强. 集成式电子液压制动系统位移压力特性理论研究[J]. 机械工程学报, 2022, 58(22): 294-303. |
[8] | 周素霞, 邵京, 童欣. 基于长大坡道持续制动的新型制动盘研究[J]. 机械工程学报, 2022, 58(20): 391-398. |
[9] | 刘海超, 刘红旗, 冯明, 李亮, 吴进军, 魏凌涛. 智能汽车集成式线控制动系统传动机构优化设计[J]. 机械工程学报, 2022, 58(20): 399-409. |
[10] | 张超, 马蕾, 丁昊昊, 郭立昌, 王文健, 郭俊, 刘启跃. 低温环境下制动参数对列车制动材料摩擦性能的影响[J]. 机械工程学报, 2021, 57(8): 230-239. |
[11] | 吕雪梅, 王曦, 罗明生. 考虑接触热阻的高速列车制动盘热机耦合行为分析[J]. 机械工程学报, 2021, 57(22): 296-304. |
[12] | 赵健, 邓志辉, 朱冰, 常婷婷, 陈志成. 基于RBF网络滑模的电动助力制动系统液压力控制[J]. 机械工程学报, 2020, 56(24): 106-114. |
[13] | 范童柏, 任尊松, 查浩, 徐宁. 考虑旋转效应的制动盘螺栓弯矩分布规律[J]. 机械工程学报, 2020, 56(22): 159-166. |
[14] | 齐红元, 秦芳芳, 张蕾, 申林, 郝文晓, 周永杰, 尹方. 动车组运行状态制动毂建模及应力分析[J]. 机械工程学报, 2019, 55(5): 97-103. |
[15] | 熊璐, 韩伟, 余卓平, 李昊诚. 考虑关键非线性特征的集成式电子液压制动系统主缸液压力精确控制[J]. 机械工程学报, 2019, 55(24): 117-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||