[1] 余卓平,韩伟,徐松云,等. 电子液压制动系统液压力控制发展现状综述[J]. 机械工程学报, 2017, 53(14):1-15. YU Zhuoping, HAN Wei, XU Songyun, et al. Review on hydraulic pressure control of electro-hydraulic brake system[J]. Journal of Mechanical Engineering, 2017, 53(14):1-15. [2] TODESCHINI F, FORMENTIN S, PANZANI G, et al. Deadzone compensation and anti-windup design for brake-by-wire systems[C]//2014 American Control Conference. Portland, USA. IEEE, 2014:572-577. [3] YONG Jiawang, GAO Feng, DING Nenggen, et al. Pressure-tracking control of a novel electro-hydraulic braking system considering friction compensation[J]. Journal of Central South University, 2017, 24(8):1909-1921. [4] TODESCHINI F, CORNO M, PANZANI G, et al. Adaptive position-pressure control of a brake by wire actuator for sport motorcycles[J]. European Journal of Control, 2014, 20(2):79-86. [5] TODESCHINI F, CORNO M, PANZANI G, et al. Adaptive cascade control of a brake-by-wire actuator for sport motorcycles[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1310-1319. [6] HAN W, XIONG L, YU Z. Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties[J]. Mechanical Systems and Signal Processing, 2019, 131:703-727. [7] ZHAO J, HU Z, ZHU B. Pressure control for hydraulic brake system equipped with an electro-mechanical brake booster[R]. SAE, 2018-01-0829, 2018. [8] HAN W, XIONG L, YU Z. Pressure estimation algorithms in decoupled electro-hydraulic brake system considering the friction and pressure-position relationship[C/CD]//WCX SAE World Congress Experience, 2019. [9] 欧阳. 轿车稳定性控制系统轮缸压力控制和估算算法研究[D]. 长春:吉林大学, 2011. OU Yang. Research on controlling and estimating algorithm for wheel cylinder pressure of stability control system on passenger car[D]. Changchun:Jilin University, 2011. [10] ANTANAITIS D, RIEFE M, SANFORD J. Automotive brake hose fluid consumption characteristics and its effects on brake system pedal feel[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2010(3):113-130. [11] 陆洪明,李小华. 基于车辆液压制动卡钳需液量的研究和应用[C/CD]//2015中国汽车工程学会年会论文集, 2015. LU Hongming, LI Xiaohua. Research and application on hydraulic pressure brake system for caliper required liquid[C/CD]//2015 China Society of Automotive Engineers Annual Conference Proceedings, 2015. [12] 赵晨馨. 汽车制动钳所需液量检测系统设计及研究[D]. 杭州:中国计量大学, 2016. ZHAO Chenxin. Design and research of detection system for required fluid amount of automobile brake caliper[D]. Hangzhou:China Jiliang University, 2016. [13] 黄世健,周维,陈祯福,等. 汽车液压制动系统需液量特性研究[J]. 武汉理工大学学报, 2019, 43(4):741-745. HUANG Shijian, ZHOU Wei, CHEN Zhenfu, et al. Research on the required fluid amount characteristics of Aautomotive hydraulic braking system[J]. Journal of Wuhan University of Technology, 2019, 43(4):741-745. [14] 王权,刘伟,张致兴,等.车辆制动系统需液量仿真分析[J].液压与气动, 2018(5):88-92. WANG Quan, LIU Wei, ZHANG Zhixing, et al. Simulation analysis for required fluid amount of automobile brake system[J]. Hydraulics and Pneumatics, 2018(5):88-92. [15] FISHER D K. Brake system component dynamic performance measurement and analysis[C/CD]//International Automobile Safety Conference, Detroit, Michigan, 1970. [16] YAMADA T, SAWADA M. Development and implementation of simulation tool for vehicle brake system[C/CD]//SAE 2001 Word Congress, Detroit, Michigan, 2001. [17] 孟德建,张立军,方明霞,等. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报, 2014, 45(5):1388. MENG Dejian, ZHANG Lijun, FANG Mingxia, et al. Master cylinder dynamic model for brake pedal feeling and its key factors[J]. Journal of Jilin University, 2014, 45(5):1388. [18] 余卓平,史彪飞,熊璐,等. 集成式电子液压制动系统的复合制动协调控制[J]. 同济大学学报, 2019, 48(6):851-856. YU Zhuoping, SHI Biaofei, XIONG Lu, et al. Coordinated control of hybrid braking based on integrated-electro-hydraulic brake system[J]. Journal of Tongji University, 2019, 48(6):851-856. [19] YU Z, XU S, XIONG L, et al. An integrated-electro-hydraulic brake system for active safety[C/CD]//SAE International SAE 2016 World Congress and Exhibition, 2016. [20] 吴根茂. 新编实用电液比例技术[M]. 杭州:浙江大学出版社, 2006. WU Genmao. New practical electro-hydraulic proportional technology[M]. Hangzhou:Zhejiang University Press. 2006. [21] 梁思伟. 汽车制动系统中含气制动液的有效体积弹性模量研究[D]. 杭州:中国计量大学, 2018. LIANG Siwei. Research on effective bulk modulus of brake fluid with air containing in automobile brake system[D]. Hangzhou:China Jiliang University, 2018. [22] 冯斌. 液压油有效体积弹性模量及测量装置的研究[D]. 杭州:浙江大学, 2011. FENG Bin. Study on Effective fluid bulk modulus and measurement in hydraulic system[D]. Hangzhou:Zhejiang University, 2011. [23] 王良模,曾小平,于鹏晓. 汽车液压制动系统设计与分析软件的开发[J]. 南京理工大学学报, 2001(3):247-251. WANG Liangmo, ZENG Xiaoping, YU Pengxiao, et al. The development of software of designing and analyzing vehicle brake system[J]. Journal of Nanjing University of Science and Technology, 2001(3):247-251. [24] 陈家瑞. 汽车构造(下册)[M]. 北京:人民交通出版社, 2002. CHEN Jiarui. Vehicle structure(Volume II)[M]. Beijing:China Communications Press. 2002. [25] 韩伟. 集成式电子液压制动系统液压力控制算法[D]. 上海:同济大学, 2019. HAN Wei. Study on hydraulic pressure control of integrated-electro-hydraulic brake system[D]. Shanghai:Tongji University, 2019. |