机械工程学报 ›› 2023, Vol. 59 ›› Issue (14): 277-297.doi: 10.3901/JME.2023.14.277
赵欢, 葛东升, 罗来臻, 尹业灿, 丁汉
收稿日期:
2022-08-01
修回日期:
2023-01-25
出版日期:
2023-07-20
发布日期:
2023-08-16
通讯作者:
赵欢(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为机器人智能化加工与装备技术。E-mail:huanzhao@hust.edu.cn
作者简介:
葛东升,男,1994年出生,博士研究生。主要研究方向为多机器人协作控制。E-mail:gds@hust.edu.cn;罗来臻,男,1998年出生。主要研究方向为机器人路径规划。E-mail:laizhenluo@hust.edu.cn;尹业灿,男,1997年出生。主要研究方向为机器人视觉。E-mail:yinyecan@hust.edu.cn;丁汉,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为数字化制造与机器人化智能制造。E-mail:dinghan@hust.edu.cn
基金资助:
ZHAO Huan, GE Dongsheng, LUO Laizhen, YIN Yecan, DING Han
Received:
2022-08-01
Revised:
2023-01-25
Online:
2023-07-20
Published:
2023-08-16
摘要: 大型构件对接装配是航空航天大型飞行器总装中的重要环节,随着具有快速响应需求的航天任务越来越多(如发射应急卫星和商业通信卫星等),亟需提升运载火箭等大型飞行器的快速组装和发射能力。这对大型飞行器舱段对接装配的效率和可靠性提出了更高要求。因此,对接装配模式从原来的人工模式,正逐渐向自动化、数字化、智能化方向发展。针对大型构件自动化柔性对接装配中所涉及的三大关键技术进行综述,详细总结大型构件对接装配调姿定位机构、数字化测量技术、规划与控制技术的原理、特点与应用,并探讨了大型构件自动化柔性对接装配技术的未来研究方向。
中图分类号:
赵欢, 葛东升, 罗来臻, 尹业灿, 丁汉. 大型构件自动化柔性对接装配技术综述[J]. 机械工程学报, 2023, 59(14): 277-297.
ZHAO Huan, GE Dongsheng, LUO Laizhen, YIN Yecan, DING Han. Survey of Automated Flexible Docking Assembly Technology for Large-scale Components[J]. Journal of Mechanical Engineering, 2023, 59(14): 277-297.
[1] 邹冀华,刘志存,范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机集成制造系统,2007,13(7):1367-1373. ZOU Jihua,LIU Zhicun,FAN Yuqing. Large-size airplane parts digital assembly technology[J]. Computer Integrated Manufacturing System,2007,13(7):1367-1373. [2] 熊涛. 卫星自动对接技术研究[J]. 航空制造技术,2011,22:36-39. XIONG Tao. Automatic docking technology of satellite[J]. Aeronautical Manufacturing Technology,2011,22:36-39. [3] 梅中义,黄超,范玉青. 飞机数字化装配技术发展与展望[J]. 航空制造技术,2015(18):32-37. MEI Zhongyi,HUANG Chao,FAN Yuqing. Development and prospect of the aircraft digital assembly technology[J]. Aeronautical Manufacturing Technology,2015(18):32-37. [4] 文科,杜福洲,张铁军,等. 舱段类部件数字化柔性对接系统设计与试验研究[J]. 航空制造技术,2017(11):24-31. WEN Ke,DU Fuzhou,ZHANG Tiejun,et al. Research on design and experiment for digital flexible aligning system of cabin components[J]. Aeronautical Manufacturing Technology,2017(11):24-31. [5] 许国康. 大型飞机自动化装配技术[J]. 航空学报,2008(3):734-740. XU Guokang. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica,2008(3):734-740. [6] BURLEY G,ODI R,NAING S,et al. Jigless aerospace manufacture-the enabling technologies[R]. SAE Technical Paper,1999-01-2286,1999. [7] KIHLMAN H,OSSBAHR G,ENGSTRÖM M,et al. Low-cost automation for aircraft assembly[C/CD]//SAE 2004 Aerospace Manufacturing & Automated Fastening Conference & Exhibition,September 21th 2004,St Louis,Missouri,United States,2004. [8] GRIFFITHS S,NATALE C,ARAÚJO R,et al. The ECHORD project:A general perspective[C]//Gearing up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe Technology Transfer Experiment form the ECHORD Project,London:Springer,Cham,2014:1-24. [9] ERDEM I,HELGOSSON P,GOMES A,et al. Automated flexible tooling for wing box assembly:Hexapod development study[R]. SAE Technical Paper,2016-01-2110,2016. [10] MARGUET B,RIBERE B. Measurement-assisted assembly applications on airbus final assembly lines[R]. SAE Technical Paper,2003. [11] WILLIAMS G,CHALUPA E,RAHHAL S. Automated positioning and alignment systems[J]. SAE Transactions,2000,109(1):737-745. [12] Futuristic Raytheon. Alabama factory makes missiles with robots[EB/OL].[2021-08-11].https://www.madeinalabama.com/2013/06/futuristic-raytheon-alabama-factory-makes-missiles/. [13] FLYNN R,PAYTON-STEWART K,BREWER P,et al. Unique material handling and automated metrology systems provides backbone of accurate final assembly line for business jet[R]. SAE Technical Paper,2016-01-2104,2016. [14] DILLHÖFER T,ESTEBAN D G. IFAC (integrated fuselage assembly cell)[J]. SAE Transactions,2006:937-946. [15] CHENG Liang,WANG Qing,LI Jiangxiong,et al. A posture evaluation method for a large component with thermal deformation and its application in aircraft assembly[J]. Assembly Automation,2014,34(3):275-284. [16] LIU Hua,ZHU Weidong,KE Yinglin. Pose alignment of aircraft structures with distance sensors and CCD cameras[J]. Robotics and Computer-Integrated Manufacturing,2017,48:30-38. [17] 王青,梁琴,李江雄,等. 飞机数字化装配机翼姿态评价及调整方法[J]. 浙江大学学报,2014,48(7):1287-1294. WANG Qing,LIANG Qin,LI Jiangxiong,et al. Estimation and alignment method of wing position and orientation for aircraft digital assembly[J]. Journal of Zhejiang University,2014,48(7):1287-1294. [18] WANG Qing,DOU Yadong,LI Jiangxiong,et al. An assembly gap control method based on posture alignment of wing panels in aircraft assembly[J]. Assembly Automation,2017,37(4):422-433. [19] 郭志敏,蒋君侠,柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报,2009,30(7):1319-1324. GUO Zhimin,JIANG Junxia,KE Yinlin. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica Et Astronautica Sinica,2009,30(7):1319-1324. [20] ZHANG Bin,YAO Baoguo,KE Yinglin. A novel posture alignment system for aircraft wing assembly[J]. Journal of Zhejiang University-Science A,2009,10(11):1624-1630. [21] 曲巍崴,董辉跃,柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报,2011,32(10):1951-1960. QU Weiwei,DONG Huiyue,KE Yinlin. Pose accuracy compensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica,2011,32(10):1951-1960. [22] ZENG Qi,LI Shuanggao,HUANG Xiang. Configuration optimization of the feature-oriented reference system in large component assembly[J]. The International Journal of Advanced Manufacturing Technology,2021,113(3):673-687. [23] CHU Wenmin,HUANG Xiang,LI Shuanggao,et al. A ball head positioning method based on hybrid force-position control[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2021,235(8):1433-1444. [24] DENG Zhengping,HUANG Xiang,LI Shuanggang,et al. On-line calibration and uncertainties evaluation of spherical joint positions on large aircraft component for zero-clearance posture alignment[J]. Robotics and Computer-Integrated Manufacturing,2019,56:38-54. [25] CHU Wenmin,HUANG Xiang,LI Shuanggao. A novel calibration method for ball joint position in a posture adjustment system[J]. Measurement Science and Technology,2020,31(12):125013. [26] CHU Wenmin,HUANG Xiang,LI Shuanggao. A calibration method of redundant actuated parallel mechanism for posture adjustment[J]. Industrial Robot:the International Journal of Robotics Research and Application,2021,48(4):494-509. [27] 杜福洲,叶晗鸣. 基于视觉的大尺度部件相对位姿实时测量方法研究[J]. 航空制造技术,2021,64(6):34-40,47. DU Fuzhou,YE Hanming. Research on real-time relative pose measurement method of large-scale components based on vision[J]. Aeronautical Manufacturing Technology,2021,64(6):34-40,47. [28] 杜福洲,吴典. 面向大尺度产品对接的位姿测量模式研究与应用[J]. 航空制造技术,2019,62(15):34-41. DU Fuzhou,WU Dian. Research and application of pose measurement mode for large-scale product assembly[J]. Aeronautical Manufacturing Technology,2019,62(15):34-41. [29] DU Fuzhou,WU Dian. A multi-constraints based pose coordination model for large volume components assembly[J]. Chinese Journal of Aeronautics,2020,33(4):1329-1337. [30] CHEN Zhehan,DU Fuzhou,TANG Xiaoqing. Position and orientation best-fitting based on deterministic theory during large scale assembly[J]. Journal of Intelligent Manufacturing,2018,29(4):827-837. [31] LEI Pei,ZHENG Lianyu. An automated in-situ alignment approach for finish machining assembly interfaces of large-scale components[J]. Robotics and Computer-Integrated Manufacturing,2017,46:130-143. [32] FAN Wei,ZHENG Lianyu,JI Wei,et al. A machining accuracy informed adaptive positioning method for finish machining of assembly interfaces of large-scale aircraft components[J]. Robotics and Computer-Integrated Manufacturing,2021,67:102021. [33] FAN Wei,ZHENG Lianyu,JI Wei,et al. Function block-based closed-loop adaptive machining for assembly interfaces of large-scale aircraft components[J]. Robotics and Computer-Integrated Manufacturing,2020,66:101994. [34] 朱绪胜,郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报,2012,33(9):1726-1736. ZHU Xusheng,ZHENG Lianyu. Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica,2012,33(9):1726-1736. [35] 代卫兵,胡瑞钦,易旺民. 航天器大型舱段柔性对接技术研究[J]. 航天器环境工程,2014,31(6):584-588. DAI Weibin,HU Ruiqin,YI Wangmin. The flexible docking technology for large spacecraft cabins[J]. Spacecraft Environment Engineering,2014,31(6):584-588. [36] 易旺民,段碧文,高峰,等. 大型舱段装配中的水平对接技术[J]. 计算机集成制造系统,2015,21(9):2354-2360. YI Wangmin,DUAN Biwen,GAO Feng,et al. Level docking technology in large cabin assembly[J]. Computer Intergraded Manufacturing Systems,2015,21(9):2354-2360. [37] 易旺民,隆昌宇,胡瑞钦. 面向航天器装配测试的机器人系统及应用(上)[J]. 中国航天,2019(2):30-33. YI Wangmin,LONG Changyu,HU Ruiqin. Robot system and application for spacecraft assembly test (Part 1)[J]. Aerospace China,2019(2):30-33. [38] 易旺民,隆昌宇,胡瑞钦. 面向航天器装配测试的机器人系统及应用(下)[J]. 中国航天,2019(3):50-54. YI Wangmin,LONG Changyu,HU Ruiqin. Robot system and application for spacecraft assembly test (Part 2)[J]. Aerospace China,2019(3):50-54. [39] 董悫,张立建,易旺民,等. 基于动力学前馈的空间机器人多销孔装配力柔顺控制[J]. 机械工程学报,2019,55(4):207-217. DONG Que,ZHANG Lijian,YI Wangmin,et al. Force compliance control of multi-peg-in-hole assembling by space robot based on dynamic feedforward[J]. Journal of Mechanical Engineering,2019,55(4):207-217. [40] 杨振,易旺民,范百兴,等. iGPS系统与经纬仪测量系统联合测量方法研究[J]. 宇航计测技术,2016,36(4):27-31,50. YANG Zhen,YI Wangmin,FAN Baixing,et al. Research on joint measurement method of iGPS system and theodolite system[J]. Journal of Astronautic Metrology and Measurement,2016,36(4):27-31,50. [41] 潘廷耀,范百兴,西勤. 经纬仪多基准尺联合标定技术研究[J]. 测绘工程,2016,25(5):56-58,63. PAN Tinyao,FAN Baixing,XI Qin,et al. Research of theodolite scale joint calibration technology[J]. Engineering of Surveying and Mapping,2016,25(5):56-58,63. [42] 潘廷耀,范百兴,易旺民,等. 激光跟踪仪动态精度评定方法研究[J]. 测绘通报,2016(5):54-56. PAN Tinyao,FAN Baixing,YI Wangmin,et al. Research on evaluation method of laser tracker dynamic accuracy[J]. Bulletin of Surveying and Mapping,2016(5):54-56. [43] 陈冠宇,成群林,张解语,等. 基于多传感器测量的航天器舱段自动对接位姿调整方法[J]. 北京航空航天大学学报,2019,45(6):1232-1239. CHEN Guanyu,CHEN Qunlin,ZHANG Jieyu,et al. Multi-sensor measurement based position and pose adjustment method for automatic docking of spacecraft cabins[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(6):1232-1239. [44] 陈冠宇,成群林,何军. 基于在线调姿的航天器舱段自动对接系统设计[J]. 导弹与航天运载技术,2020(1):99-106. CHEN Guanyu,CHENG Qunlin,HE Jun,et al. Design of automatic docking system for spacecraft cabin based on online posture adjustment[J]. Missiles and Space Vehicles,2020(1):99-106. [45] 张解语,仇原鹰,宁博,等. 筒形件姿态的非接触无靶标自动综合测量及求解[J]. 光学精密工程,2018,26(12):2963-2970. ZHANG Jieyu,QIU Yuanying,NING Bo,et al. Automatic comprehensive noncontact measurement and solution method for cylindrical workpieces without targets[J]. Optics and Precision Engineering,2018,26(12):2963-2970. [46] 王杰鹏,谢永权,宋涛,等. 力觉交互控制的机械臂精密位姿控制技术[J]. 机械设计与研究,2019,35(4):47-52. WANG Jiepeng,XIE Yongquan,SONG Tao,et al. A precise robot control technology for satellite assembly based on force interaction control[J]. Machine Design & Research,2019,35(4):47-52. [47] 刘仁伟,徐晓辉,谢永权,等. 基于机械臂辅助的卫星柔顺装配技术研究[J]. 机电工程,2020,37(5):532-536. LIU Renwei,XU Xiaohui,XIE Yongquan,et al. Compliant assembly technology of satellite assisted by robot arm[J]. Journal of Mechanical & Electrical Engineering,2020,37(5):532-536. [48] 郭洪杰. 飞机大部件自动对接装配技术[J]. 航空制造技术,2013(13):72-75. GUO Hongjie. Automated joint assembly technology for large structure of aircraft[J]. Aeronautical Manufacturing Technology,2013(13):72-75. [49] 中国运载火箭技术研究院. 数字化对接装配技术:火箭芯级自动对接精度高速度快[EB/OL]. (2020-06-10)[2021-08-11]. http://calt.spacechina.com/n482/n756/c17891/content.html. China Academy of Launch Vehicle Technology. Digital docking assembly technology:Rocket core stage automatic docking with high precision and fast speed[EB/OL]. (2020-06-10)[2021-08-11]. http://calt.spacechina.com/n482/n756/c17891/content.html. [50] 上海航天技术研究院. 航天智能工厂的"十八般武艺"[EB/OL]. (2021-01-29)[2021-08-11]. http://www.sast.cn/n1323881/n1323961/c3117319/content.html. Shanghai Academy of Spaceflight Technology. "18 Martial Arts" of aerospace smart factory[EB/OL]. (2021-01-29)[2021-08-11]. http://www.sast.cn/n1323881/n1323961/c3117319/content.html. [51] SARH B. Assembly techniques for space vehicles[R]. SAE,2000-01-3028,2000. [52] MEI Z,MAROPOULOS P G. Review of the application of flexible,measurement-assisted assembly technology in aircraft manufacturing[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014,228(10):1185-1197. [53] 潘国威,陈文亮,王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报,2019,40(1):272-288. PAN Guowei,CHEN Wenliang,WANG Min. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1):272-288. [54] 潘廷耀,范百兴,易旺民. 大尺寸动态测量技术综述[J].测绘与空间地理信息,2015,38(8):70-72,76. PAN Tinyao,FAN Baixing,YI Wangmin,et al. Overview of large-scale dynamic measurement metrology[J]. Geomatics & Spatial Information Technology,2015,38(8):70-72,76. [55] SCHMITT R H,PETEREK M,MORSE E,et al. Advances in large-scale metrology-review and future trends[J]. CIRP Annals,2016,65(2):643-665. [56] CHEN Zhehan,DU Fuzhou,TANG Xiaoqing,et al. A framework of measurement assisted assembly for wing-fuselage alignment based on key measurement characteristics[J]. International Journal of Manufacturing Research,2015,10(2):107-128. [57] ZOU Jihua,AHMAD R,FAN Yuqing. Research for major-parts digital assembly system of large-scale airplane[C]//Proceedings of the 5th WSEAS International Conference on Circuits,Systems,Electronics,Control & Signal Processing,2006:337-343. [58] 世豪. 承上启下——中国地地导弹事业的起步(中)——东风3东风4导弹研制历程[J]. 世界航空航天博览:A版,2006,6:4-9. SHI Hao. Connecting the preceding and the following-the beginning of China's ground to surface missile industry (Part 2)-the development process of Dongfeng 3 and Dongfeng 4 missiles[J]. World Aerospace Expo:Version A,2006,6:4-9. [59] 胡冬冬,苏鑫鑫. 雷锡恩公司建成世界最先进的导弹总装厂[J]. 飞航导弹,2013(2):9-11. HU Dongdong,SU Xinxin. Lexian company has built the world's most advanced missile assembly plant[J]. Winged Missile,2013(2):9-11. [60] ZHU Yongguo,HUANG Xiang,LI Shuanggao. A novel six degrees-of-freedom parallel manipulator for aircraft fuselage assemble and its trajectory planning[J]. Journal of the Chinese Institute of Engineers,2015,38(7):928-937. [61] 李昂. 机身对接装配技术研究[D]. 沈阳:沈阳航空航天大学,2018. LI Ang. Research on docking assembly technology of fuselage[D]. Shenyang:Shenyang Aerospace University,2018. [62] 于勇,陶剑,范玉青. 波音787飞机装配技术及其装配过程[J]. 航空制造技术,2009,14:44-47. YU Yong,TAO Jian,FAN Yuqing. Assembly technology and process of Boeing 787 jet[J]. Aeronautical Manufacturing Technology,2009,14:44-47. [63] SUN Tao,SONG Yimin,DONG Gang,et al. Optimal design of a parallel mechanism with three rotational degrees of freedom[J]. Robotics and Computer-Integrated Manufacturing,2012,28(4):500-508. [64] SCHMITT R,CORVES B,LOOSEN P,et al. Cognition-enhanced,self-optimizing assembly systems[M]. Berlin:Springer,2017. [65] REID E. Development of a mobile drilling and fastening system based on a PKM robotic platform[R]. SAE. 2015-01-2509,2015. [66] 邱铁成,张满,张立伟,等. 机器人在卫星舱板装配中的应用研究[J]. 航天器环境工程,2012,29(5):579-585. QIU Tiecheng,ZHANG Man,ZHANG Liwei,et al. The satellite board assembly with robot[J]. Spacecraft Environment Engineering,2012,29(5):579-585. [67] TRABASSO L,MOSQUEIRA G. Light automation for aircraft fuselage assembly[J]. The Aeronautical Journal,2020,124(1272):216-236. [68] MAISANO D,JAMSHIDI J,FRANCESCHINI F,et al,Owen GW (2008) Indoor GPS:System functionality and initial performance evaluation[J]. International Journal of Manufacturing Research,2008,3(3):335-349. [69] 陈文磊. 激光跟踪仪控制系统研究[D]. 天津:天津大学,2011. CHEN Wenlei. Research on control system of laser tracking system[D]. Tianjin:Tianjin University,2011. [70] NORMAN A R,SCHÖNBERG A,GORLACH I A,et al. Validation of iGPS as an external measurement system for cooperative robot positioning[J]. The International Journal of Advanced Manufacturing Technology,2013,64(1-4):427-446. [71] WANG Zheng,MASTROGIACOMO L,FRANCESCHINI F,et al. Experimental comparison of dynamic tracking performance of iGPS and laser tracker[J]. The International Journal of Advanced Manufacturing Technology,2011,56(1-4):205-213. [72] PÉREZ L,RODRÍGUEZ Í,RODRÍGUEZ N,et al. Robot guidance using machine vision techniques in industrial environments:A comparative review[J]. Sensors,2016,16(3):335. [73] LIU Wei,LAN Zhiguang,ZHANG Yang,et al. Global data registration technology based on dynamic coded points[J]. IEEE Transactions on Instrumentation and Measurement,2017,67(2):394-405. [74] JIANG Tao,CUI Haihua,CHENG Xiaosheng. A calibration strategy for vision-guided robot assembly system of large cabin[J]. Measurement,2020,163:107991. [75] JIANG Tao,CUI Haihua,CHENG Xiaosheng,et al. A measurement method for robot peg-in-hole prealignment based on combined two-level visual sensors[J]. IEEE Transactions on Instrumentation and Measurement,2020,70:5000912. [76] MEYER V R. Measurement uncertainty[J]. Journal of Chromatography A,2007,1158(1-2):15-24. [77] IONESCU-BUJOR M,CACUCI D G. A comparative review of sensitivity and uncertainty analysis of large-scale systems-i:Deterministic methods[J]. Nuclear Science and Engineering,2004,147(3):189-203. [78] 金涨军. 飞机装配中大尺寸测量场的建立与优化技术[D]. 杭州:浙江大学,2016. JIN Zhangjun. Establishment and optimization of large-volume measuringfield in aircraft assembly[D]. Hangzhou:Zhejiang University,2016. [79] CACUCI D G,IONESCU-BUJOR M. A comparative review of sensitivity and uncertainty analysis of large-scale systems-II:Statistical methods[J]. Nuclear Science and Engineering,2004,147(3):204-217. [80] CHEN Zhehan,DU Fuzhou,TANG Xiaoqing. Research on uncertainty in measurement assisted alignment in aircraft assembly[J]. Chinese Journal of Aeronautics,2013(6):1568-1576. [81] BERGSTRÖM P,EDLUND O. Robust registration of point sets using iteratively reweighted least squares[J]. Computational Optimization and Applications,2014,58(3):543-561. [82] PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering,2010,34(1):113-123. [83] HAO Qiang,ZHANG Ya,FAN Shiwei,et al. A novel three-dimensional coordinate positioning algorithm based on factor graph[J]. IEEE Access,2020,8:207167-207180. [84] LU Yongkang,LIU Wei,ZHANG Yang,et al. An accurate calibration method of large-scale reference system[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(9):6957-6967. [85] ZHENG L Y,YANG F L,NI A J. A general framework of measurement system configuration for large and complex components[C]//Proceedings of the 6th CIRP-Sponsored International Conference on Digital Enterprise Technology. Springer,Berlin,Heidelberg,2010:983-997. [86] 陈磊. 数字化测量辅助的飞机翼身对接装配协调技术研究[D]. 南京:南京航空航天大学,2018. CHEN Lei. Research on coordination technology of digital measurement assisted wing-fuselage docking[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2018. [87] 杨景照. 面向大尺度制造的激光跟踪测量评估与规划关键技术研究[D]. 长沙:国防科学技术大学,2014. YANG Jingzhao. Research on key technologies in evaluation and planning of laser-tracking measurement for large scale manufacturing[D]. Changsha:National University of Defense Technology,2014. [88] 林雪竹,李丽娟,曹国华,等. 大部件对接中iGPS高精度位姿测量优化设计[J]. 航空学报,2015,36(4):1299-1311. LIN Xuezhu,LI Lijuan,CAO Guohua,et al. Optimal design based on iGPS high-precision posture measurement for large size component joining[J]. Acta Aeronauticaet Astronautica Sinica,2015,36(4):1299-1311. [89] CHEN Zhehan,DU Fuzhou. Measuring principle and uncertainty analysis of a large volume measurement network based on the combination of iGPS and portable scanner[J]. Measurement,2017,104:263-277. [90] JIN Zhangjun,YU Cijun,LI Jiangxiong,et al. Configuration analysis of the ERS points in large-volume metrology system[J]. Sensors,2015,15(9):24397-24408. [91] REN Yu,LIN Jiarui,ZHU Jigui,et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement,2015,64(9):2380-2388. [92] DENG Zhengping,LI Shuanggao,HUANG Xiang. Uncertainties evaluation of coordinate transformation parameters in the large-scale measurement for aircraft assembly[J]. Sensor Review,2018,38(4):542-550. [93] DENG Zhengping,LI Shuanggao,HUANG Xiang. Coordinate transformation uncertainty analysis and reduction using hybrid reference system for aircraft assembly[J]. Assembly Automation,2018,38(4):487-496. [94] ZHANG Yifan,WANG Qing,ZHAO Anan,et al. A multi-object posture coordination method with tolerance constraints for aircraft components assembly[J]. Assembly Automation,2019,40(2):345-359. [95] SCHMITT R,WITTE A,JANßEN M,et al. Metrology assisted assembly of airplane structure elements[J]. Procedia Cirp,2014,23:116-121. [96] WEN Ke,DU Fuzhou,ZHANG Xianzhi. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a Stewart platform[J]. Chinese Journal of Aeronautics,2016,29(6):1840-1851. [97] 陈良杰,孙占磊,景喜双,等. 基于iGPS的飞机部件对接技术研究[J]. 航空制造技术,2017(11):34-39,51. CHEN Liangjie,SUN Zhanlei,JING Xishuang,et al. Research on i GPS-based aircraft components docking technology[J]. Aeronautical Manufacturing Technology,2017(11):34-39,51. [98] 王青,郑飞,任英武,等. 基于孔特征约束的飞机部件位姿优化方法[J]. 计算机集成制造系统,2017,23(2):243-252. WANG Qing,ZHENG Fei,REN Yingwu,et al. Posture evaluation method for aircraft component based on hole feature[J]. Comput. Integr. Manuf. Syst.,2017,23(2):243-252. [99] WU Dian,DU Fuzhou. A new method of precise orientation adjustment based on matrix similarity for large-scale component[J]. Assembly Automation,2018,38(2):207-215. [100] DE CAMPOS PORATH M,BORTONI L A F,SIMONI R,et al. Offline and online strategies to improve pose accuracy of a Stewart Platform using indoor-GPS[J]. Precision Engineering,2020,63:83-93. [101] ATA A A. Optimal trajectory planning of manipulators:A review[J]. Journal of Engineering Science and Technology,2007,2(1):32-54. [102] 崔学良,韩先国,陈五一. 大尺寸弱刚性构件对接装配系统轨迹规划[J]. 计算机集成制造系统,2011,17(5):908-914. CUI Xueliang,HAN Xianguo,CHEN Wuyi. Trajectory planning for a large scale weak rigid component docking assembling system[J]. Computer Integrated Manufacturing Systems,2011,17(5):908-914. [103] ZHU Yongguo,HUANG Xiang,FANG Wei,et al. Trajectory planning algorithm based on quaternion for 6-DOF aircraft wing automatic position and pose adjustment method[J]. Chinese Journal of Aeronautics,2010,23(6):707-714. [104] 张斌,方强,柯映林. 大型刚体调姿系统最优时间轨迹规划[J]. 机械工程学报,2008(8):248-252. ZHANG Bin,FANG Qiang,KE Yinlin. Optimal time trajectory planning method for a kind of posture aligning system of large rigid bodies[J]. Journal of Mechanical Engineering,2008(8):248-252. [105] 徐海黎,解祥荣,庄健,等. 工业机器人的最优时间与最优能量轨迹规划[J]. 机械工程学报,2010,46(9):19-25. XU Haili,XIE Xiangrong,ZHUANG Jian,et al. Global time-energy optimal planning of industrial robot trajectories[J]. Journal of Mechanical Engineering,2010,46(9):19-25. [106] CHEN C T,PHAM H V. Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm[J]. Nonlinear Dynamics,2012,67(2):1669-1681. [107] WHITNEY D E. Quasi-static assembly of compliantly supported rigid parts[J]. Journal of Dynamic Systems,Measurement,and Control,1982,104(1):65-77. [108] LOZANO-PEREZ T,MASON M T,TAYLOR R H. Automatic synthesis of fine-motion strategies for robots[J]. The International Journal of Robotics Research,1984,3(1):3-24. [109] NEWMAN W S,ZHAO Yonghong,PAO Y H. Interpretation of force and moment signals for compliant peg-in-hole assembly[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). IEEE,2001:571-576. [110] DU Fuzhou,WEN Ke,YU Hao. A self-adaptive alignment strategy for large components based on dynamic compliance center[J]. Assembly Automation,2019,39(2):345-355. [111] BERTELSMEIER F,DETERT T,ÜBELHÖR T,et al. Cooperating robot force control for positioning and untwisting of thin walled components[J]. Adv. Robot Autom.,2017,6(3):1000179. [112] MARVEL J A,NEWMAN W S,GRAVEL D P,et al. Automated learning for parameter optimization of robotic assembly tasks utilizing genetic algorithms[C]//2008 IEEE International Conference on Robotics and Biomimetics,IEEE,2009:179-184. [113] PEÑA-CABRERA M,LOPEZ-JUAREZ I,RIOS-CABRERA R,et al. Machine vision approach for robotic assembly[J]. Assembly Automation,2005,25(3):204-216. [114] NAVARRO-GONZALEZ J L,LOPEZ-JUAREZ I,RIOS-CABRERA R,et al. On-line knowledge acquisition and enhancement in robotic assembly tasks[J]. Robotics and Computer-Integrated Manufacturing,2015,33:78-89. [115] ABDULLAH M W,ROTH H,WEYRICH M,et al. An approach for peg-in-hole assembling using intuitive search algorithm based on human behavior and carried by sensors guided industrial robot[J]. IFAC-PapersOnLine,2015,48(3):1476-1481. [116] PARK H,PARK J,LEE D H,et al. Compliance-based robotic peg-in-hole assembly strategy without force feedback[J]. IEEE Transactions on Industrial Electronics,2017,64(8):6299-6309. [117] RAIBERT M H,CRAIG J J. Hybrid position/force control of manipulators[J]. ASME J of Dynamic Systems Measurement & Control,1981,102:126-133. [118] LI Yangmin. Hybrid control approach to the peg-in hole problem[J]. IEEE Robotics & Automation Magazine,1997,4(2):52-60. [119] 罗中海,孟祥磊,巴晓甫,等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报,2015,49(2):265-274. LUO Zhonghai,MENG Xianglei,BA Xiaofu,et al. Design on hybrid force position control of large aircraft components posture alignment platform[J]. Journal of Zhejiang University,2015,49(2):265-274. [120] FANG Qiang,CHEN Weidong,ZHAO Anan,et al. Control system designing for correcting wing-fuselage assembly deformation of a large aircraft[J]. Assembly Automation,2017,37(1):22-33. [121] HOGAN N. Impedance control:An approach to manipulation:Part I-Theory[J]. Journal of Dynamic Systems,Measurement,and Control,1985,107(1):1-7. [122] BROENINK J F,TIERNEGO M L J. Peg-in-hole assembly using impedance control with a 6 dof robot[C]//Proceedings of the 8th European Simulation Symposium,1996:504-508. [123] TSUMUGIWA T,YOKOGAWA R,HARA K. Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems,IEEE,2002,2:1075-1081. [124] STOLT A,LINDEROTH M,ROBERTSSON A,et al. Adaptation of force control parameters in robotic assembly[J]. IFAC Proceedings Volumes,2012,45(22):561-566. [125] BELTRAN-HERNANDEZ C C,PETIT D,RAMIREZ-ALPIZAR I G,et al. Learning force control for contact-rich manipulation tasks with rigid position-controlled robots[J]. IEEE Robotics and Automation Letters,2020,5(4):5709-5716. [126] JOHANNSMEIER L,GERCHOW M,HADDADIN S. A framework for robot manipulation:Skill formalism,meta learning and adaptive control[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE,2019:5844-5850. [127] WAN An,XU Jing,CHEN Heping,et al. Optimal path planning and control of assembly robots for hard-measuring easy-deformation assemblies[J]. IEEE/ASME Transactions on Mechatronics,2017,22(4):1600-1609. [128] DUQUE D A,PRIETO F A,HOYOS J G. Trajectory generation for robotic assembly operations using learning by demonstration[J]. Robotics and Computer-Integrated Manufacturing,2019,57:292-302. [129] KRONANDER K,BURDET E,BILLARD A. Task transfer via collaborative manipulation for insertion assembly[C]//Workshop on Human-robot Interaction for Industrial Manufacturing,Robotics,Science and Systems. Citeseer,2014. [130] SONG Jingzhou,CHEN Qingle,LI Zhendong. A peg-in-hole robot assembly system based on Gauss mixture model[J]. Robotics and Computer-Integrated Manufacturing,2021,67:101996. [131] CHAUMETTE F,HUTCHINSON S. Visual servo control. I. Basic approaches[J]. IEEE Robotics & Automation Magazine,2006,13(4):82-90. [132] HUANG Shouren,MURAKAMI K,YAMAKAWA Y,et al. Fast peg-and-hole alignment using visual compliance[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2013:286-292. [133] ZHU Weidong,LIU Hua,KE Yinglin. Sensor-based control using an image point and distance features for rivet-in-hole insertion[J]. IEEE Transactions on Industrial Electronics,2019,67(6):4692-4699. [134] TRIYONOPUTRO J C,WAN Weiwei,HARADA K. Quickly inserting pegs into uncertain holes using multi-view images and deep network trained on synthetic data[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,2019:5792-5799. |
[1] | 秦光林, 崔长彩, 尹方辰, 黄辉. 面向复杂立体石雕的机器人面扫描视点规划[J]. 机械工程学报, 2024, 60(8): 22-33. |
[2] | 侯旭朝, 马越, 项昌乐. 电驱动履带车辆转向稳定性控制研究[J]. 机械工程学报, 2024, 60(8): 233-244. |
[3] | 冯俊鑫, 赵振宙, 陈明, 江瑞芳, 王丁丁, 刘一格. 涡流发生器高度对风力机翼段动态失速过程的影响分析[J]. 机械工程学报, 2024, 60(8): 291-298. |
[4] | 赵川, 孙凤, 金俊杰, 徐方超, 张明, OKA Koichi. 混合磁悬浮系统零功率抗偏载控制方法研究[J]. 机械工程学报, 2024, 60(8): 360-369. |
[5] | 徐丰羽, 马凯威, 宋巨龙, 范保杰, 武新军. 基于弹簧-磁流变阻尼器的拉索攀爬机器人减振机构及控制方法[J]. 机械工程学报, 2024, 60(8): 384-395. |
[6] | 邓建新, 袁邦颐, 黄秋林, 丁度坤, 辛曼玉, 刘光明. 基于工业机器人的复杂曲面磨抛关键技术综述[J]. 机械工程学报, 2024, 60(7): 1-21. |
[7] | 杨晓航, 赵智远, 李云涛, 徐梓淳, 赵京东. 基于可操作度优化的冗余机械臂逆运动学求解方法[J]. 机械工程学报, 2024, 60(7): 22-33. |
[8] | 和东平, 王涛, 刘元铭, 徐慧东, 王君, 王志华. 板带轧机振动理论研究进展[J]. 机械工程学报, 2024, 60(7): 93-113. |
[9] | 申世全, 任锟, 李永国, 韩蕴生, 项琬婷, 耿赫阳. 金属表面异形区域上色轨迹自动规划[J]. 机械工程学报, 2024, 60(7): 258-265. |
[10] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[11] | 刘阔, 姜业明, 黄任杰, 李明禹, 陈虎, 王永青. 虑及颤振在线抑制的机床高效自适应加工技术研究[J]. 机械工程学报, 2024, 60(6): 104-113. |
[12] | 陈祉旭, 李晨星, 杨春利. 面向叶片损伤修复的机器人电弧熔丝沉积工艺研究[J]. 机械工程学报, 2024, 60(6): 187-196. |
[13] | 周晨, 徐飞翔. 四轮独立转向车辆转向模式切换轨迹多目标优化方法研究[J]. 机械工程学报, 2024, 60(6): 306-320. |
[14] | 陈清华, 杨云帆, 閤鑫, 凌亮, 王开云. 基于电磁力作用的地铁列车防滑控制研究[J]. 机械工程学报, 2024, 60(6): 334-341. |
[15] | 张立元, 杨锦波, 李澳, 杨庆凯, 徐光魁. 张拉整体球形机器人构型设计与控制研究进展[J]. 机械工程学报, 2024, 60(5): 1-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||