[1] 葛培琪,陈自彬,王沛志. 单晶硅切片加工技术研究进展[J]. 金刚石与磨料磨具工程,2020,40(4):12-18. GE Peiqi,CHEN Zibin,WANG Peizhi. Review of monocrystalline silicon slicing technology[J]. Diamond and Abrasives Engineering,2020,40(4):12-18. [2] 陈自彬,葛梦然,毕文波,等. 单晶硅裂纹萌生的刻划深度研究[J]. 金刚石与磨料磨具工程,2021,41(3):55-59. CHEN Zibin,GE Mengran,BI Wenbo,et al. Study on crack initiation scratching depth of monocrystalline silicon[J]. Diamond and Abrasives Engineering,2021,41(3):55-59. [3] MIYAZAKI C. Development of high accuracy wafer thinning and pickup technology for thin wafer(die)[C]//Institute of Electrical and Electronics Engineers. IEEE electronics packing society. The Leading International Components,Packaging,and Manufacturing Technology Symposium,August 24-26,2010,Tokyo,Cpmt Symposium Japan. 2010:1-5 [4] 康仁科. 大尺寸单晶硅片加工技术简介[J]. 金刚石与磨料磨具工程,2020,40(4):1-4. KANG Renke. Review on silicon wafer processing technology of large size[J]. Diamond and Abrasives Engineering,2020,40(4):1-4. [5] 闫志瑞,库黎明,白杜娟,等. 半导体硅片制备技术及产业现状[J]. 金刚石与磨料磨具工程,2020,40(4):5-11. YAN Zhirui,KU Liming,BAI Dujuan,et al. Manufacturing technique and industry status of semiconductor silicon wafers[J]. Diamond and Abrasives Engineering,2020,40(4):5-11. [6] LI H,YU T,ZHU L,et al. Analytical modeling of grinding-induced subsurface damage in monocrystalline silicon[J]. Materials & Design,2017,130:250-262. [7] ZHANG L,CHEN P,AN T,et al. Analytical prediction for depth of subsurface damage in silicon wafer due to self-rotating grinding process[J]. Current Applied Physics,2019,19(5):570-581. [8] HUANG H,LI X,MU D,et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools and Manufacture, 2021,161:103675. [9] 王紫光,康仁科,周平,等. 单晶硅反射镜的超精密磨削工艺[J]. 光学精密工程,2019,27(5):1087-1095. WANG Ziguang,KANG Renke,ZHOU Ping,et al. Ultra-precision grinding of monocrystalline silicon reflector[J]. Optics and Precision Engineering,2019,27(5):1087-1095. [10] 曾毅波,张杰,许马会,等. Mems中基底和薄膜的cmp制造技术[J]. 光学精密工程,2018,26(6):1450-1461. ZENG Yibo,ZHANG Jie,XU Mahui,et al. Fabrication of substrate and film in MEMS using CMP[J]. Optics and Precision Engineering,2018,26(6):1451-1461. [11] 王紫光,高尚,朱祥龙,等. 硅片低损伤磨削砂轮及其磨削性能[J]. 光学精密工程,2017,25(10):2689-2696. WANG Ziguang,GAO Shang,ZHU Xianglong,et al. Grinding wheel for low-damage grinding of silicon wafers and its grinding performance[J]. Optics and Precision Engineering,2017,25(10):2689-2696. [12] ZHOU L,SHIMIZU J,EDA H. A novel fixed abrasive process:chemo-mechanical grinding technology[J]. International Journal of Manufacturing Technology and Management,2005,5(7):441-454. [13] ZHOU L,EDA H,SHIMIZU J,et al. Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding[J]. CIRP Annals,2006,55(1):313-316. [14] GAO S,DONG Z,KANG R,et al. Design and evaluation of soft abrasive grinding wheels for silicon wafers[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2013,227(4):578-586. [15] HUANG H,WANG B,WANG Y,et al. Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding[J]. Materials Science and Engineering:A,2008,479(1-2):373-379. [16] KAMIYA S,IWASE H,KISHITA K,et al. Study on reaction mechanism of Si and pure Ceo2 for chemical-mechanical-grinding process[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2009,27(3):1496. [17] GAO S,HUANG H,ZHU X,et al. Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel[J]. Materials Science in Semiconductor Processing,2017,63:97-106. [18] 王晓东. 不同湿度和水下单晶硅的纳米磨损研究[D]. 成都:西南交通大学,2014. WANG Xiaodong. Study on the nanowear of monocrystalline silicon in different humid air and under water[D]. Chengdu:Southwest Jiaotong University,2014. [19] KATSUKI F,SAGUCHI A,TAKAHASHI W,et al. The atomic-scale removal mechanism during Si tip scratching on Si and SiO2 surfaces in aqueous KOH with an atomic force microscope[J]. Japanese Journal of Applied Physics,2002,7(41):4919-4923. [20] NEVSHUPA R,SCHERHE M,AHMED U. Transitional microfriction behavior of silicon induced by spontaneous water adsorption[J]. Surface Science,2002,1(517):17-28. [21] VIGIL G,XU Z,STEINBERG S,et al. Interactions of silica surfaces[J]. Journal of Colloid and Interface Science,1994(165):367-385. [22] CEROFOLINI G,MEDA L. Chemistry at silicon crystalline surfaces[J]. Applied Surface Science,1995,89(4):351-360. [23] 陈诚. 单晶硅机械化学耦合去除机理研究[D]. 成都:西南交通大学,2018. CHEN Cheng. Research on removal mechanism of silicon via mechanochemical synergy.[D]. Chengdu:Southwest Jiaotong University,2018. [24] 余家欣. 单晶硅的切向纳动研究[D]. 成都:西南交通大学,2011. YU Jiaxin. Tangential nanofretting behavior of monocrystalline silicon.[D]. Chengdu:Southwest Jiaotong University,2011 [25] FREIMAN S,WIEDERHORN S,MECHOLSKY J,et al. Environmentally enhanced fracture of glass:A historical perspective[J]. Journal of the American Ceramic Society,2009,7(92):1371-1382. |