• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (3): 337-348.doi: 10.3901/JME.2023.03.337

• 制造工艺与装备 • 上一篇    

扫码分享

薄壁回转体表面岛屿状高凸台结构旋印电解加工成形过程研究

王登勇1,2, 乐华勇1,2, 朱荻1,2   

  1. 1. 南京航空航天大学机电学院 南京 210016
    2. 南京航空航天大学江苏省精密与微细重点实验室 南京 210016
  • 收稿日期:2022-03-03 修回日期:2022-06-03 出版日期:2023-02-05 发布日期:2023-04-23
  • 通讯作者: 王登勇(通信作者),男,1990年出生,博士,教授,博士研究生导师。主要研究方向为电化学加工技术。E-mail:dywang@nuaa.edu.cn
  • 作者简介:乐华勇,男,1997年出生,博士研究生。主要研究方向为电解加工技术。E-mail:823271591@qq.com;朱荻,男,1954年出生,博士,教授,博士研究生导师,中科院院士。主要研究方向为特种加工技术。E-mail:dzhu@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金面上(52175414)、国家自然科学基金创新群体(51921003)和中国科协青年人才托举工程(YESS20180025)资助项目。

Investigation of the Shaping Process of Island-like High Convex Structure on Thin-walled Revolving Part during Counter-rotating Electrochemical Machining

WANG Dengyong1,2, LE Huayong1,2, ZHU Di1,2   

  1. 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
  • Received:2022-03-03 Revised:2022-06-03 Online:2023-02-05 Published:2023-04-23

摘要: 以航空发动机机匣为代表的薄壁回转体表面分布有大量岛屿状的高凸台结构,此类零件普遍存在加工变形大、刀具损耗严重等制造难题。旋印电解加工采用回转体工具电极,通过工件与工具的同步对转实现阳极材料的逐层均匀溶解,对于机匣等薄壁回转体零件加工具有独特优势。开展了旋印电解凸台成形过程的仿真研究,建立了电极等效运动分析模型和阳极溶解数学模型,掌握岛屿状高凸台结构旋印电解加工成形规律。仿真结果表明,阴极进给深度和窗口宽度对凸台轮廓形状有着很大的影响。随着阴极工具的不断进给,阴极窗口运动轨迹的包络线逐渐由尖锥形变为纺锤形,凸台侧壁锥度不断减小,呈现从正锥形→垂直→倒锥的变化趋势。阴极窗口宽度的增加会导致窗口运动轨迹倾斜角度增大,有利于获得锥度较小的凸台侧壁轮廓。对于任意阴极窗口宽度的凸台侧壁轮廓均可以通过某一宽度的轮廓通过角度旋转偏置获得。此外,旋印电解加工间隙呈现出非平衡态变化趋势。在仿真分析的基础上,进一步开展了旋印电解加工试验研究,在镍基合金GH4169薄壁回转体表面加工出岛屿状高凸台结构。试验结果表明旋印电解加工技术对于具有较大高度复杂异形岛屿状凸台结构的薄壁回转体零件具有较好的加工能力。

关键词: 电解加工, 薄壁回转体, 对转运动, 岛屿状凸台, 加工间隙

Abstract: There are many complex island-like high convex structures distributing on the thin-walled revolution part represented by the aero-engine casing. Machining such parts still remain a lot of problems such as serious tool wear, long process cycle and large machining deformation. Counter-rotating electrochemical machining (CRECM) uses a revolving electrode as the cathode tool. The anode workpiece and cathode tool rotate oppositely at the same angular velocity, and the material is dissolved layer by layer. This method holds unique advantages for the machining of thin-walled revolving part such as aero-engine casing. The anode shaping process during CRECM is simulated numerically, the equivalent kinematics model of the electrodes and an anodic material dissolution model are established, and an anode shaping law during counter-rotating electrochemical machining (CRECM) of island-like high convex structure is mastered. The simulation results indicate that the profile of the convex structure is greatly affected by both the feed depth and width of cathode window. With the increase of the feed depth, the motion orbits of the frontier points of the cathode window changes from the initial pointed-cone to spindle shape, and the sidewall taper of the convex structure is reduced accordingly, showing a variation trend from normal cone to vertical to inverted cone. The increase of the width of the cathode window will lead to a larger inclination angle of motion trajectory of the frontier point, which is beneficial for achieving a relative straight sidewall profile. The sidewall profile of the convex structure at an arbitrary width of the cathode window can be simply obtained through angular rotation bias of the profile at a certain width. Furthermore, it is found that the inter-electrode gap in CRECM is in a non-equilibrium state. On the basis of simulation analysis, a CRECM experiment is carried out. A high island-like high convex structure is fabricated successfully on the surface of thin-walled nickel-based GH4169 super alloy without any tool wear. The experimental results indicate that the CRECM method has good processing performance for the thin-walled revolving parts with high complex island-like convex structure.

Key words: electrochemical machining, thin-walled revolving part, counter-rotating motion, island-like convex structure, inter-electrode gap

中图分类号: