[1] 任军学,杨俊,周金华,等. 航空发动机机匣数控加工变形控制方法[J]. 航空制造技术,2014(23-24):96-99. REN Junxue,YANG Jun,ZHOU Jinhua,et al. Method of controlling deformation of aeroengine casing in NC machining[J]. Aeronautical Manufacturing Technology,2014(23-24):96-99. [2] WANG Z B,SUN J F,LIU L B,et al. An analytical model to predict the machining deformation of frame parts caused by residual stress[J]. Journal of Materials Processing Technology,2019,274:116282. [3] 孙雅洲,刘海涛,卢泽生. 基于热力耦合模型的切削加工残余应力的模拟及试验研究[J]. 机械工程学报,2011,47(1):187-193. SUN Yazhou,LIU Haitao,LU Zesheng. Finite element simulation and experimental research of residual stresses in the cutting based on the coupled thermo-mechanical model[J]. Journal of Mechanical Engineering,2011,47(1):187-193. [4] 任萍,杨秀娟,李霞,等. 网格结构加力筒体制造技术. 航空制造技术,2015(20):69-72. REN Ping,YANG Xiujuan,LI Xia,et al. Manufacture technology of afterburner body with grid structure[J]. Aeronautical Manufacturing Technology,2015(20):69-72. [5] RAJURKAR K P,SUNDARAM M M,MALSHE A P. Review of electrochemical and electrodischarge machining[J]. Procedia CIRP,2013,6:13-26. [6] XU Z Y,WANG Y D. Electrochemical machining of complex components of aero-engines:Developments,trends,and technological advances[J]. Chinese Journal of Aeronautics,2021,34(2):28-53. [7] KLOCKE F,ZEISA M,KLINKA A,et al. Technological and economical comparison of roughing strategies via milling,EDM and ECM for titanium- and nickel-based blisks[J]. Procedia CIRP,2012,2:98-101. [8] 李红英,张明岐,张志金,等. 航空发动机整体薄壁结构复杂表面电解加工技术[J]. 航空制造技术,2018(3):41-45. LI Hongying,ZHANG Mingqi,ZHANG Zhijin,et al. Electrochemical machining of complex surface of integral thin-walled components in aero-engine[J]. Aeronautical Manufacturing Technology,2018(3):41-45. [9] KLOCKE F,KLINK A,VESELOVAC D,et al. Turbomachinery component manufacture by application of electrochemical,electro-physical and photonic processes[J]. CIRP Annals,2014,63:703-726. [10] WANG D Y,ZHU Z W,WANG N F,et al. Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution[J]. Electrochimica Acta,2015,156:301-307. [11] WANG D Y,ZHU Z W,HE B,et al. Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution[J]. Journal of Materials Processing Technology,2017,239:251-257. [12] ZHU Z W,WANG D Y,BAO J,et al. Cathode design and experimental study on the rotate-print electrochemical machining of revolving parts[J]. International Journal of Advanced Manufacturing Technology,2015,80:1957-1963. [13] LI J Z,WANG D Y,ZHU D,et al. Analysis of the flow field in counter-rotating electrochemical machining[J]. Journal of Materials Processing Technology,2020,275:116323. [14] Ren Z Y,WANG D Y,CUI G W,et al. Optimize the flow field during counter-rotating electrochemical machining of grid structures through an auxiliary internal fluid flow pattern[J]. Precision Engineering,2021,72:448-460. [15] WANG D Y,ZHU Z W,WANG N F,et al. Effects of shielding coatings on the anode shaping process during counter-rotating electrochemical machining[J]. Chinese Journal of Mechanical Engineering,2016,29:971-976. [16] WANG D Y,ZHU Z W,ZHU D,et al. Reduction of stray currents in counter-rotating electrochemical machining by using a flexible auxiliary electrode mechanism[J]. Journal of Materials Processing Technology,2017,239:66-74. [17] WANG D Y,ZHU Z W,HE B,et al. Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool[J]. Journal of Manufacturing Processes,2018,35:614-623. [18] CAO W J,WANG D Y,REN Z Y,et al. Evolution of convex structure during counter-rotating electrochemical machining based on kinematic modeling[J]. Chinese Journal of Aeronautics,2021,34(3):39-49. [19] WANG D Y,WANG Q Q,ZHANG Jun,et al. Counter-rotating electrochemical machining of intensive cylindrical pillar array using an additive manufactured cathode tool[J]. International Journal of Mechanical Sciences,2021,106653. [20] MOUNT A R,CLIFTON D,HOWARTH P,et al. An integrated strategy for materials characterization and process simulation in electrochemical machining[J]. Journal of Materials Processing Technology,2003,138:449-454. [21] KOZAK J. Mathematical models for computer simulation of electrochemical machining processes[J]. Journal of Materials Processing Technology,1998,76:170-175. [22] HOCHENG H,SUN Y H,LIN S C,et al. A material removal analysis of electrochemical machining using flat-end cathode[J]. Journal of Materials Processing Technology,2003,140:264-268. [23] PACZKOWSKI T,ZDROJEWSKI J. Monitoring and control of the electrochemical machining process under the conditions of a vibrating tool electrode[J]. Journal of Materials Processing Technology,2017,244:204-214. [24] RAJURKAR K P,WEI B,KOZAK J,et al. Modelling and monitoring interelectrode gap in pulse electrochemical machining[J]. CIRP Annals,1995,44(1):177-180. [25] WANG D Y,ZHU Z W,WANG N F,et al. Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution[J]. Electrochimica Acta,2015,156:301-307. |