[1] 姜文,张恒,严由春,等. 马氏体不锈钢铣削加工刀具磨损及切削参数优化的实验研究[J]. 机械设计与制造工程,2018,47(6):30-33. JIANG Wen,ZHANG Heng,YAN Youchun,et al. The experimental research on tool wear and optimization of cutting parameter in milling martensite stainless steel[J]. Machine Design and Manufacturing Engineering,2018,47(6):30-33. [2] MUSTAFA U,OSMAN A,TURAN G,et al. Surface roughness prediction of machine daluminum alloy with wire electrical discharge machining by different machine learning algorithms[J]. Journal of Materials Research and Technology,2020,9(6):12512-12524. [3] LEILA P,NAEIME M,SHIMA Y. Evaluating the effect of repeated use of milling burs on surface roughness and adaptation of digitally fabricated ceramic veneers[J]. Heliyon,2021,7(4):1-8. [4] 魏士亮,房丰洲,刘立飞,等. 铣削加工透波性Si3N4陶瓷表面质量研究[J]. 宇航材料工艺,2020,50(2):57-62. WEI Shiliang,FANG Fengzhou,LIU Lifei,et al. Effect of milling on the surface quality of wave-transmitting Si3N4 ceramics[J]. Aerospace Materials & Technology,2020,50(2):57-62. [5] 于英钊,高军,郑光明,等. 高速干铣削高强钢铣削力及表面粗糙度研究[J]. 组合机床与自动化加工技术,2018(12):21-24. YU Yingzhao,GAO Jun,ZHENG Guangming,et al. Milling forces and surface roughness in high-speed dry milling of high-strength steel[J]. Modular Machine Tool & Automatic Manufacturing Technique,2018(12):21-24. [6] UMA M R P,SURYAPAVAN C,VENKAT P K P,et al. Machine learning and statistical approach in modeling and optimization of surface roughness in wire electrical discharge machining[J]. Machine Learning with Applications,2021,6:1-11. [7] 郑中鹏,金鑫,江振卫,等. 微小型车铣加工表面粗糙度分析及预测模型建立[J]. 导航与控,2019,18(5):91-98. ZHENG Zhongpeng,JIN Xin,JIANG Zhenwei,et al. Analysis and establishment of prediction model for surface roughness of micro turn-milling[J]. Navigation and Control,2019,18(5):91-98. [8] SEPEHR N,MASOUD P. Prediction of surface roughness of various machining processes by a hybrid algorithm including time series analysis,wavelet transform and multi view embedding[J]. Measurement,2021,184:1-12. [9] ARRAZOLA P J,ÖZEL T,UMBRELLO D,et al. Recent advances in modelling of metal machining processes[J]. CIRP Annals-Manufacturing Technology,2013,62(2):695-718. [10] 侯军明,王保升,汪木兰. 端面车铣加工表面粗糙度预测模型的研究[J]. 工具技术,2016,50(6):99-102. HOU Junming,WANG Baosheng,WANG Mulan. Research on prediction model of surface roughness in turn-milling machining[J]. Tool Engineering,2016,50(6):99-102. [11] CHEN W,XIE W,HUO D,et al. A novel 3D surface generation model for micro milling based on homogeneous matrix transformation and dynamic regenerative effect[J]. International Journal of Mechanical Sciences,2018,144:146-157. [12] JING X,LI H,WANG J,et al. Modelling the cutting forces in micro-end-milling using a hybrid approach[J]. The International Journal of Advanced Manufacturing Technology,2014,73:1647-1656. [13] 付中涛,杨文玉,张彦辉. 基于切削力预测模型的复杂曲面铣削进给速度优化[J]. 中国科学,2016,46(7):722-730. FU Zhongtao,YANG Wenyu,ZHANG Yanhui. Feedrate optimization of complex surface milling based on predictive model of cutting force[J],Science China,2016,46(7):722-730. [14] SARAYUT N,SUTHEP B. Surface roughness prediction with chip morphology using fuzzy logic on milling machine[J]. Materials Today:Proceedings,2020,26(2):2357-2365. [15] 王永鑫,张昌明. TC18钛合金钻削加工性能与响应面优化试验[J]. 中国科技论文,2019,14(8):841-845. WANG Yongxin,ZHANG Changming. Experimental study on drilling performance and response surface optimization of TC18 titanium alloy[J]. Chinese Sciencepaper,2019,14(8):841-845. [16] 陆德光,张太华,徐卫平. 基于QGA-SVR的工件表面粗糙度预测和分析[J]. 机床与液压,2020,48(15):103-108. LU Deguang,ZHANG Taihua,XU Weiping. Prediction and analysis of workpiece surface roughness based on QGA-SVR[J]. Machine Tool & Hydraulics,2020,48(15):103-108. [17] 阴艳超,丁卫刚. 切削加工表面粗糙度的多维多规则云预测方法[J]. 机械工程学报,2016,52(15):204-212. YIN Yanchao,DING Weigang. A novel cloud model prediction for surface roughness based on multidimensional & multi-rules reasoning[J]. Journal of Mechanical Engineering,2016,52(15):204-212. [18] 李锋,李涌泉,李文科,等. 刀具走刀方式对TC11薄壁件铣削表面质量影响规律研究[J]. 表面技术,2017,46(7):250-254. LI Feng,LI Yongquan,LI Wenke,et al. Effect of tool path mode on milled surface quality of TC11 thin-walled parts[J]. Surface Technology,2017,46(7):250-254. [19] 王亚霁,孙玉利,墨洪磊,等. 单晶硅透镜铣磨工艺参数优化研究[J]. 航空制造技术,2021,64(7):90-94. WANG Yaji,SUN Yuli,MO Honglei,et al. Study on optimization of grinding process parameters of monocrystalline silicon lens[J]. Aeronautical Manufacturing Technology,2021,64(7):90-94. [20] SHIVANNA D M,KIRAN M B,VENKATESH G S,et al. Analyzing the effects of machining parameters on surface roughness of machined surfaces using vision system[J]. Materials Today:Proceedings,2021,47(14):4885-4890. [21] 盖立武,吴查穆,张克栋. Inconel718镍基合金高速铣削表面粗糙度研究[J]. 组合机床与自动化加工技术,2021,10:147-150. GAI Liwu,WU Chamu,ZHANG Kedong. Research on surface roughness of Inconel 718 nickel-based alloy in high speed milling[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021,10:147-150. [22] 罗恒,王优强,张平. 基于单因素法对7A09铝合金铣削表面质量的研究[J]. 表面技术,2020,49(3):327-333. LUO Heng,WANG Youqiang,ZHANG Ping. Study on surface quality of 7A09 aluminum alloy milling based on single factor method[J]. Surface Technology,2020,49(3):327-333. [23] PASICHNYI O O,LAVRINENKO V I. The influence of circumferential waviness of the diamond wheel working surface on the machined surface roughness[J]. Journal of Superhard Materials,2019,41:278-280. [24] WANG Y J,HUANG H B,CHEN L G,et al. Choice of reference surfaces for machined surface roughness in milling of SiCp/Al composites[J]. Journal of Central South University,2014,21:4150-4156. [25] 马利杰,王西彬,刘贯军,等. 振动钻削的运动学特性及其对加工质量的影响[J]. 中国机械工程,2009,20(17):2027-2031. MA Lijie,WANG Xibin,LIU Guanjun,et al. Kinematics characteristics of vibration drilling and its influence on processing quality[J]. China Mechanical Engineering,2009,20(17):2027-2031. [26] 史中权,叶文华. 多轴联动条件下插补速度实时可调的前瞻控制算法[J]. 航空学报,2014,35(2):582-592. SHI Zhongquan,YE Wenhua. A look-ahead algorithm with adjustable real-time feedrate based on multi-axis synchronous interpolation[J]. Acta Aeronautica et Astronautica Sinica,2014,35(2):582-592. [27] QU S,ZHAO J B,WANG T. Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate[J]. The International Journal of Advanced Manufacturing Technology,2016,86:2291-2300. |