[1] 刘宇,李天翔,刘阔,等.基于四阶矩法车削颤振可靠性研究[J].机械工程学报, 2016, 52(20):193-200. LIU Yu, LI Tianxiang, LIU Kuo, et al. Chatter reliability of turning processing system based on fourth moment method[J]. Journal of Mechanical Engineering, 2016, 52(20):193-200. [2] 卢晓红,杨昆,栾贻函,等.薄壁铣削加工颤振稳定性研究综述[J].振动与冲击, 2021, 40(8):50-61, 69. LU Xiaohong, YANG Kun, LUAN Yihan, et al. A review on chatter stability in thin-wall milling[J]. Journal of Vibration and Shock, 2021, 40(8):50-61, 69. [3] POSTEL M, OZSAHIN O, ALTINTAS Y. High speed tooltip FRF predictions of arbitrary tool-holder combinations based on operational spindle identification[J]. International Journal of Machine Tools and Manufacture, 2018, 129:48-60. [4] SCHMITZ T, DAVIES A, KENNEDY M. Tool point frequency response prediction for high-speed machining by RCSA[J]. Journal of Manufacturing Science and Engineering, 2001, 123(4):700-707. [5] MASCARDELLI B, PARK S, FREIHEIT T. Substructure coupling of microend mills to aid in the suppression of chatter[J]. Journal of Manufacturing Science and Engineering, 2008, 130(1):2816104. [6] BUDAK E, ERTÜRK A, ZGÜVEN H. A modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics[C]//Annals of the CIRP. CIRP, The International Academy for Production Engineering, 2006, 55(1):369-372. [7] AHMADI K, AHMADIAN H. Modeling machine tool dynamics using a distributed parameter tool-holder joint interface[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12-13):1916-1928. [8] 闫蓉,蔡飞飞,彭芳瑜,等.基于响应耦合方法的铣刀刀尖点频响函数预测[J].华中科技大学学报, 2013, 41(4):1-5. YAN Rong, CAI Feifei, PENG Fangyu, et al. Predicting frequency response function for tool point of milling cutters using receptance coupling[J]. Huanzhong Univ. of Sci.&Tech., 2013, 41(4):1-5. [9] 朱坚民,石园园,田丰庆,等.考虑夹头与刀具过渡段的主轴系统精确建模[J].计算机集成制造系统, 2021, 27(8):2215-2225. ZHU Jianmin, SHI Yuanyuan, TIAN Fengqing, et al. Accurate modeling of spindle system considering transition section between chuck and tool[J]. Computer Integrated Manufacturing Systems, 2021, 27(8):2215-2225. [10] AHMADIAN H, NOURMOHAMMADI M. Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces[J]. International Journal of Machine Tools and Manufacture, 2010, 50(11):998-1005. [11] CHEN Gengxiang, LI Yingguang, LIU Xu. Pose-dependent tool tip dynamics prediction using transfer learning[J]. International Journal of Machine Tools and Manufacture, 2018(10):30-41. [12] POSTEL M, BUGDAYCI B, WEGENER K. Ensemble transfer learning for refining stability predictions in milling using experimental stability states[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(9-11):4123-4139. [13] 雷亚国,杨彬,杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [14] 董明利,马闪闪,张帆,等.基于核熵成分分析的流式数据自动分群方法[J].仪器仪表学报, 2017, 38(1):206-211. DONG Mingli, MA Shanshan, ZHANG Fan, et al. Auto classification method of flow cytometry data based on kernel entropy component analysis[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):206-211. [15] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Transferring naive bayes classifiers for text classification[C]//The Twenty-Second National Conference on Artificial Intelligence, Corvallis, Oregon, USA. Palo Alto, California:AAAI, 2007, 7:540-545. [16] 周澄,邓菲,刘尧,等.基于神经网络和支持向量机的导波弯管腐蚀损伤程度辨识研究[J].机械工程学报, 2021, 57(12):136-144. ZHOU Cheng, DENG Fei, LIU Yao, et al. Identification of corrosion damage degree of guided wave bend pipe based on neural network and support vector machine[J]. Journal of Mechanical Engineering, 2021, 57(12):136-144. |