[1] TAO Bo, ZHAO Xingwei, DING Han. Mobile-robotic machining for large complex components:A review study[J]. Science China, 2019, 62(8):1388-1400. [2] 谢福贵,梅斌,刘辛军,等.一种大型复杂构件加工新模式及新装备探讨[J].机械工程学报, 2020, 56(19):70-78. XIE Fugui, MEI Bin, LIU Xinjun, et al. Novel mode and equipment for machining large complex components[J]. Journal of Mechanical Engineering, 2020, 56(19):70-78. [3] VERL A, VALENTE A, MELKOTE S, et al. Robots in machining[J]. CIRP Annals, 2019, 68(2):799-822. [4] 曾远帆,田威,廖文和.面向飞机自动钻铆系统的工业机器人精度补偿技术[J].航空制造技术, 2016, 59(18):46-52. ZENG Yuanfan, TIAN Wei, LIAO Wenhe. Industrial robot error compensation methods for aircraft automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2016, 59(18):46-52. [5] 史晓佳,张福民,曲兴华,等. KUKA工业机器人位姿测量与在线误差补偿[J].机械工程学报, 2017, 53(8):1-7. SHI Xiaojia, ZHANG Fumin, QU Xinghua, et al. Position and attitude measurement and online errors compensation for KUKA industrial robots[J]. Journal of Mechanical Engineering, 2017, 53(8):1-7. [6] MEHLENHOFF T, BLOEDORN C. Solution for automated drilling in composite structures with a standard articulating robot system[R]. SAE Technical Paper, 2010. [7] WANG S M, LIU Y L, KANG Y. An efficient error compensation system for CNC multi-axis machines[J]. International Journal of Machine Tools and Manufacture, 2002, 42(11):1235-1245. [8] 文科,张加波,乐毅,等.数控驱动的移动铣削机器人精度提升方法[J].机械工程学报, 2021, 57(5):72-80. WEN Ke, ZHANG Jiabo, YUE Yi, et al. Method for improving accuracy of NC-driven mobile milling robot[J]. Journal of Mechanical Engineering, 2021, 57(5):72-80. [9] ZENG Y, TIAN W, LIAO W. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120. [10] 周炜,廖文和,田威.基于空间插值的工业机器人精度补偿方法理论与试验[J].机械工程学报, 2013, 49(3):42-48. ZHOU Wei, LIAO Wenhe, TIAN Wei. Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48. [11] NGUYEN H N, ZHOU J, KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151:996-1005. [12] LI B, TIAN W, ZHANG C, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2):346-360. [13] ZHAO G, ZHANG P, MA G, et al. System identification of the nonlinear residual errors of an industrial robot using massive measurements[J]. Robotics and ComputerIntegrated Manufacturing, 2019, 59:104-114. [14] ZHAO D, BI Y, KE Y. An efficient error compensation method for coordinated CNC five-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 2017, 123:105-115. [15] ZHU W, LI G, DONG H, et al. Positioning error compensation on two-dimensional manifold for robotic machining[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59:394-405. [16] MEI B, XIE F, LIU X J, et al. Elasto-geometrical error modeling and compensation of a five-axis parallel machining robot[J]. Precision Engineering, 2021, 69:48-61. [17] LIU X, LI Y, CHEN G. Multimode tool tip dynamics prediction based on transfer learning[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:146-154. [18] CHEN G, LI Y, LIU X. Pose-dependent tool tip dynamics prediction using transfer learning[J]. International Journal of Machine Tools and Manufacture, 2019, 137:30-41. [19] PARDOE D, STONE P. Boosting for regression transfer[C/CD]//Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. [20] 乔贵方,孙大林,宋光明,等.串联机器人标定系统的坐标系快速转换方法[J].机械工程学报, 2020, 56(14):1-8. QIAO Guifang, SUN Dalin, SONG Guangming, et al. A rapid coordinate transformation method for serial robot calibration system[J]. Journal of Mechanical Engineering 2020, 56(14):1-8. [21] KENAN D, DONG G, SHOUDONG M, et al. Contouring errors and feedrate fluctuation of serial industrial robot in complex toolpath with different controller[C]//International Conference on Intelligent Robotics and Applications. Springer, Cham, 2021:100-108. |