[1] 陈雪峰, 訾艳阳. 智能运维与健康管理[M]. 北京:机械工业出版社, 2018. CHEN Xuefeng, ZI Yanyang. Intelligent maintenance and health management[J]. Beijing:China Machine Press, 2018. [2] 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报, 2013, 49(1):63-72. WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1):63-72. [3] 雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104. [4] 雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56. LEI Yaguo, JIA Feng, ZHOU Xin, et al. A deep learning-based method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56. [5] 李川, 张绍辉, JOSE V. 基于次优网络深度学习的3D打印机故障诊断[J]. 机械工程学报, 2019, 55(7):73-80. LI Chuan, ZHANG Shaohui, JOSÉ V. Fault diagnosis for 3d printers using suboptimal networked deep learning, Journal of Mehanical Engineering, 2019, 55(7):73-80. [6] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7):9-18. HU Niaoqing, CHEN Huipeng, CHENG Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7):9-18. [7] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning, July 6-11, Lille, France, 2015:97-105. [8] PAN S, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359. [9] 沈飞, 陈超, 严如强. 奇异值分解与迁移学习在电机故障诊断中的应用[J]. 振动工程学报, 2017, 30(1):118-126. SHEN Fei, CHEN Chao, YAN Ruqiang. Application of SVD and transfer learning strategy on motor fault diagnosis[J]. Journal of Vibration Engineering, 2017, 30(1):118-126. [10] XIE Junyao, ZHANG Laibin, DUAN Lixiang, et al. On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis[C]//Proceeding of International Conference on Prognostics and Health Management, June 20-22, Ottawa, Canada, 2016:1-6. [11] ZHANG Ran, TAO Hongyang, WU Lifeng, et al. Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J]. IEEE Access, 2017, 5:14347-14357. [12] YAN Ruqiang, SHEN Fei, SUN Chuang, et al. Knowledge transfer for rotary machine fault diagnosis[J]. IEEE Sensors Journal, 2019, 20(15):8374-8393. [13] 邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9):84-90. SHAO Haidong, ZHANG Xiaoyang, CHENG Junsheng, et al. Fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9):84-90. [14] SHAO Shiyu, MCALEER S, YAN Ruqiang, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4):2446-2455. [15] CHEN Zhuyun, KONSTANTINOS G, LI Weihua. Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1):339-349. [16] GANI Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research 2017, 17(1):2096-2030. [17] LU Weining, LIANG Bin, CHENG Yu, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2016, 64(3):2296-2305. [18] WEN Long, GAO Liang, LI Xingyu. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 49(1):136-144. [19] 雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7):1-8. LEI Yaguo, YANG Bin, DU Zhaojun, et al, Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [20] ZHANG Bo, LI Wei, TONG Zhe, et al. Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks[J]. IEEE Access, 2018, 6:66367-66384. [21] WANG Xu, SHEN Changqing, XIA Min, et al. Multi-scale deep intra-class transfer learning for bearing fault diagnosis[J]. Reliability Engineering & System Safety, 2020, 202:107050-107056. [22] HAN Te, LIU Chao, YANG Wenguang, et al. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults[J]. Knowledge-Based Systems, 2019, 165:474-487. [23] YANG Bin, LEI Yaguo, JIA Feng, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems & Signal Processing, 2019, 122:692-706. [24] LI Xiang, ZHANG Wei, DING Qian. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing, 2019, 157:180-197. [25] ZHU Jun, CHEN Nan, SHENG Changqing, et al. A new deep transfer learning method for bearing fault diagnosis under different working conditions[J], IEEE Sensors Journal, 2019, 20(15):8394-8402. [26] GOODFELLOW I, POUGET J, MIRZA M, et al. Generative adversarial networks[C]//Annual Conference on Neural Information Processing Systems, December 8-13, Montreal, Canada, 2014:2672-2680. [27] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-23, Utah, USA, 2018:3723-3732. [28] ZHANG Wei, LI Chuanghao, PENG Gaoliang, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems & Signal Processing, 2017, 100:439-453. [29] PAN Jun, ZI Yanyang, CHEN Jinglong, et al. LiftingNet:a novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification[J]. IEEE Transactions on Industrial Electronics, 2017, 65(6):4973-4982. [30] HUANG Wenyi, CHENG Junsheng, YU Yang, et al. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis[J]. Neurocomputing, 2019, 359:77-92. [31] MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11):2579-2605. |