[1] 苏建新,蒋闯,聂少武,等.内齿轮成形磨削砂轮架振动特性实验研究[J].振动与冲击,2021,40(14):100-107.SU Jianxin, JIANG Chuang, NIE Shaowu, et al.Experimental study on the vibration characteristics of a grinding-wheel-rack for internal gear form grinding[J].Journal of Vibration and Shock,2021,40(14):100-107. [2] 刘永平,吴序堂,李鹤岐.数控锥面砂轮磨齿机磨削椭圆齿轮[J].机械工程学报,2006,42(12):70-75.LIU Yongping, WU Xutang, LI Heqi. Grinding of elliptical gears with cnc conical wheel gear grinding machine[J]. Journal of Mechanical Engineering,2006,42(12):70-75. [3] 郭辉,赵宁,项云飞,等.六轴数控蜗杆砂轮磨齿机磨削面齿轮的方法[J].机械工程学报,2015,51(11):186-194.GUO Hui,ZHAO Ning,XIANG Yunfei,et al. Face gear grinding method using six-axis CNC worm wheel machine[J]. Journal of Mechanical Engineering,2015,51(11):186-194. [4] 李国龙,刘鹏祥,周泓曲,等.面向降噪的蜗杆砂轮磨削齿面纹理改善方法[J].机械工程学报,2017,53(23):182-189.LI Guolong,LIU Pengxiang,ZHOU Hongqu,et al.Continuous generating grinding tooth surface texture improvement method for noise reduction[J]. Journal of Mechanical Engineering,2017,53(23):182-189. [5] 王庆军,何彦杰,孙熙钊.轧机工作辊磨削振纹检测与控制[J].大型铸锻件,2021,1(2):52-54.WANG Qingjun,HE Yanjie,SUN Xizhao. Measurement and control of grinding chatter marks on working rolls of rolling mill[J]. Heavy Casting and Forging,2021,1(2):52-54. [6] ZHEN Wang,PETER W,PAULO R,et al. Neural network detection of grinding burn from acoustic emission[J]. International Journal of Machine Tools and Manufacture,2001,41(2):283-309. [7] MAHATA S,SHAKYA P,BABU N R. A robust condition monitoring methodology for grinding wheel wear identification using Hilbert Huang transform[J]. Precision Engineering,2021,70:77-91. [8] YANG Zhensheng,YU Zhonghua. Experimental study of burn classification and prediction using indirect method in surface grinding of AISI 1045 steel[J]. The International Journal of Advanced Manufacturing Technology,2013,68(9-12):2439-2449. [9] GUO Weicheng,LI Beizhi,SHEN Shouguo,et al. An intelligent grinding burn detection system based on two-stage feature selection and stacked sparse autoencoder[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5):2837-2847. [10] 邵海东,张笑阳,程军圣,等.基于提升深度迁移自动编码器的轴承智能故障诊断[J].机械工程学报,2020,56(9):84-90.SHAO Haidong,ZHANG Xiaoyang,CHENG Junsheng,et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering,2020,56(9):84-90. [11] 吴静然,刘建华,崔冉.子域适应无监督轴承故障诊断[J].振动与冲击,2021,40(15):34-40.WU Jingran,LIU Jianhua,CUI Ran. Sub-domain adaptive unsupervised bearing fault diagnosis[J]. Journal of Vibration and Shock,2021,40(15):34-40. [12] 沈飞,陈超,严如强.奇异值分解与迁移学习在电机故障诊断中的应用[J].振动工程学报,2017,30(1):118-126.SHEN Fei,CHEN Chao,YAN Ruqiang. Application of SVD and transfer learning strategy on motorfault diagnosis[J]. Journal of Vibration Engineering,2017,30(1):118-126. [13] 雷亚国,杨彬,杜兆钧,等.大数据下机械装备故障的深度迁移诊断方法[J].机械工程学报,2019,55(7):1-8.LEI Yaguo,YANG Bin,DU Zhaojun,et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering,2019,55(7):1-8. [14] LIU Han, ZHOU Jianzhong, XU Yanhe, et al.Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks[J]. Neurocomputing,2018,315(1):412-424. [15] 陈祝云,钟琪,黄如意,等.基于增强迁移卷积神经网络的机械智能故障诊断[J].机械工程学报,2021,57(12):96-105.CHEN Zhuyun,ZHONG Qi,HUANG Ruyi,et al.Intelligent fault diagnosis for machinery based on enhanced transfer convolutional neural network[J].Journal of Mechanical Engineering,2021,57(12):96-105. [16] TZENG E,HOFFMAN J,ZHANG N,et al. Deep domain confusion:maximizing for domain invariance[EB/OL].[2014-12-10]. https://arxiv.org/abs/1412.3474. [17] LONG Mingsheng,CAO Yue,WANG Jianmin,et al.Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning. PMLR,2015:97-105. [18] ZHU Yongchun,ZHUANG Fuzhen,WANG Jindong,et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,32(4):1713-1722. [19] MAATEN L,HINTON G. Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605. |