机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 373-392.doi: 10.3901/JME.2024.03.373
何春雷1, 王姝淇2, 李东洋1, 耿昆1, 陈光1, 任成祖1
收稿日期:
2023-02-23
修回日期:
2023-09-04
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
任成祖,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为超精密加工工艺与装备,高精度轴承滚动体加工技术。E-mail:renchz@tju.edu.cn
作者简介:
何春雷,男, 1988 年出生,博士,副教授,博士研究生导师。主要研究方向为超精密加工理论、工艺与装备。E-mail:h_chunlei@126.com; clhe@tju.edu.cn
基金资助:
HE Chunlei1, WANG Shuqi2, LI Dongyang1, GENG Kun1, CHEN Guang1, REN Chengzu1
Received:
2023-02-23
Revised:
2023-09-04
Online:
2024-02-05
Published:
2024-04-28
摘要: 多晶材料是一类广泛应用于超精密切削加工的工件材料。在超精密切削中,每转进给量、切削深度等工艺参数与多晶材料的平均晶粒尺寸接近,而不同晶粒之间的力学性能存在显著差异,因此晶粒对超精密切削加工过程有重要影响,甚至成为影响多晶材料超精密切削表面加工质量的关键因素。围绕该问题,针对多晶材料超精密切削加工中晶粒的影响进行综述。首先评述了晶粒对表面粗糙度影响的研究进展,重点介绍了晶界台阶现象及其影响因素;其次评述了晶粒对切削力影响的研究进展,分析了几种考虑晶粒影响的切削力模型;最后总结了超精密切削中控制晶粒影响的方法,并简要分析了相关领域的发展趋势。上述研究进展对提高多晶材料超精密切削的加工质量具有参考意义。
中图分类号:
何春雷, 王姝淇, 李东洋, 耿昆, 陈光, 任成祖. 晶粒对多晶材料超精密切削影响的研究进展[J]. 机械工程学报, 2024, 60(3): 373-392.
HE Chunlei, WANG Shuqi, LI Dongyang, GENG Kun, CHEN Guang, REN Chengzu. Research Progress on the Influence of Crystalline Grain in Ultra-precision Cutting of Polycrystalline Material[J]. Journal of Mechanical Engineering, 2024, 60(3): 373-392.
[1] 袁巨龙,张飞虎,戴一帆,等.超精密加工领域科学技术发展研究[J].机械工程学报, 2010, 46(15):161-177. YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Development research of science and technologies in ultra-precision machining field[J]. Journal of Mechanical Engineering, 2010, 46(15):161-177. [2] 卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述[J].机械工程学报, 2003, 39(8):15-21. LU Zesheng, WANG Minghai. Survey on the research of ultra-precision cutting of hard-brittle optical crystal material[J]. Journal of Mechanical Engineering, 2003, 39(8):15-21. [3] ZHANG Z, YAN J, KURIYAGAWA T. Manufacturing technologies toward extreme precision[J]. International Journal of Extreme Manufacturing, 2019, 1(2):022001. [4] 王站峰.多晶铜各向异性超精密金刚石切削加工机理研究[D].哈尔滨:哈尔滨工业大学, 2020. WANG Zhanfeng. Anisotropic ultra-precision diamond cutting mechanism of polycrystalline copper[D]. Harbin:Harbin Institute of Technology, 2020. [5] 王海龙. 6061铝合金超精密金刚石切削表面生成机理研究[D].广州:广东工业大学, 2020. WANG Hailong. Investigation on surface generation mechanism of ultra-precision cutting for aluminum alloy 6061[D]. Guangzhou:Guangdong University of Technology, 2020. [6] 赵惠英,蒋庄德,田世杰.纳米级超精密切削表面粗糙度若干影响因素分析[J].机械工程学报, 2004, 40(4):190-194. ZHAO Huiying, JIANG Zhuangde, TIAN Shijie. Analysis on some factors influencing surface quality nanoscale ultra-precision cutting[J]. Journal of Mechanical Engineering, 2004, 40(4):190-194. [7] GAO Q,CHEN W,LU L,et al. Aerostatic bearings design and analysis with the application to precision engineering:State-of-the-art and future perspectives[J]. Tribology International, 2019, 135:1-17. [8] 侯国安.流体静压支承对超精密金刚石车床动态特性影响的研究[D].哈尔滨:哈尔滨工业大学, 2013. HOU Guoan. Research on influences of hydrostatic bearing on dynamic characteristic of ultra-precision diamond lathe[D]. Harbin:Harbin Institute of Technology, 2013. [9] LIU H, ZONG W. Design criterion regarding the edge waviness and sharpness for micro diamond cutting tool[J]. Journal of Materials Processing Technology, 2022, 299:117300. [10] LIU H, ZONG W, CUI Z. Durability of micro diamond tools with different crystallographic planes[J]. Journal of Materials Processing Technology, 2022, 305:117600. [11] DORNFELD D, MIN S, TAKEUCHI Y. Recent advances in mechanical micromachining[J]. CIRP Annals, 2006, 55(2):745-768. [12] LUCCA D A, KLOPFSTEIN M J, RIEMER O. Ultra-precision machining:Cutting with diamond tools[J]. Journal of Manufacturing Science and Engineering, 2020, 142(11):110817. [13] 何春雷,任成祖,王姝淇,等.超精密车削表面衍射效应的研究进展[J].机械工程学报, 2022, 58(3):266-275. HE Chunlei,REN Chengzu,WANG Shuqi,et al. Research Progress of diffraction effect on the ultra-precision cutting surface[J]. Journal of Mechanical Engineering, 2022, 58(3):266-275. [14] BRINKSMEIER E, PREUSS W. Micro-machining[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 370(1973):3973-3992. [15] WILLIAMS J A, HORNE J G. Crystallographic effects in metal cutting[J]. Journal of Materials Science, 1982, 17(9):2618-2624. [16] STADLER H J, FREISLEBEN B, HEUBECK C. Response of metallic material to micromachining[C]//In-Process Optical Metrology for Precision Machining. SPIE, 1987, 802:67-69. [17] MORIWAKI T, OKUDA K. Machinability of copper in ultra-precision micro diamond cutting[J]. Annals of the CIRP, 1989, 38(1):115-118. [18] MORIWAKI T, SUGIMURA N, LUAN S. Combined stress, material flow and heat analysis of orthogonal micromachining of copper[J]. Annals of the CIRP, 1993, 42(1):75-78. [19] HIROKI E, SENDA H, YASUBA S, et al. ultra-precision machining of oxygen-free copper and aluminium[J]. International Progress in Precision Engineering, 1993:813-824. [20] ZHANG X, ZHANG Y. Study on the surface quality of a diamond-turned oxygen-free high-conductance copper reflector used in a high-power CO2 laser[J]. Optical Engineering, 1997, 36(3):825-830. [21] BRINKSMEIER E, RIEMER O. Measurement of optical surfaces generated by diamond turning[J]. International Journal of Machine Tools and Manufacture, 1998, 38(5-6):699-705. [22] BRINKSMEIER E, PREUSS W, RIEMER O, et al. Cutting forces, tool wear and surface finish in high speed diamond machining[J]. Precision Engineering, 2017, 49:293-304. [23] SAKAMOTO S, SHINOZAKI A, YASUI H. Possibility of ultra-precision cutting of titanium alloy with diamond tool[C]//20th Annual Meeting of the American Society for Precision Engineering, ASPE, 2005. [24] YASUI H, SHINOZAKI A, TOYAMA A, et al. Effect of low cutting speed on ultra-precision cutting of titanium alloy with coated-cemented-carbide tool[J]. International Journal of Japan Society Precision Engineering, 2006, 74(4):359-363. [25] SHINOZAKI A, YASUI H, SAKAMOTO S. Attempt on ultra-precision cutting of titanium alloy with diamond tool[J]. International Journal of Japan Society Precision Engineering, 2006, 72(12):1505-1509. [26] 奥田孝一,小川恵美. りん青銅の超精密切削仕上面に おける結晶粒界段差[J]日本機械学会, 2006(6):139-140. OKUDA K, OGAWA E. Study on step at grain boundary on finished surface by ultra-precision cutting of phosphor bronze[J]. The Japan Society of Mechanical Engineers, 2006, 6:139-140. [27] 徳山達也,手島弘貴,川上洋司,等.無酸素銅の超精密切削表面における結晶粒界段差の観察[C]//精密工学会学術講演会講演論文集, 2016:231-232. TOKUYAMA T, TESHIMA H, KAWAKAMI H, et al. Observation of grain boundary step on the polycrystalline copper surface in ultra-precision turning[C]//Proceedings of JSPE, 2016:231-232. [28] RAHMAN M A, RAHMAN M, KUMAR A S. Modelling of flow stress by correlating the material grain size and chip thickness in ultra-precision machining[J]. International Journal of Machine Tools and Manufacture, 2017, 123:57-75. [29] RAHMAN M A, AMRUN M R, RAHMAN M, et al. Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties[J]. International Journal of Machine Tools and Manufacture, 2017, 115:15-28. [30] AZIZUR R M, RAHMAN M, SENTHIL K A. Influence of relative tool sharpness (RTS) on different ultra-precision machining regimes of Mg alloy[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9):3545-3563. [31] LIU D, WANG G, YU J, et al. Molecular dynamics simulation on formation mechanism of grain boundary steps in micro-cutting of polycrystalline copper[J]. Computational Materials Science, 2017, 126:418-425. [32] WANG Z, ZHANG J, XU Z, et al. Crystal plasticity finite element modeling and simulation of diamond cutting of polycrystalline copper[J]. Journal of Manufacturing Processes, 2019, 38:187-195. [33] WANG Z, SUN T, ZHANG H, et al. The interaction between grain boundary and tool geometry in nanocutting of a bi-crystal copper[J]. International Journal of Extreme Manufacturing, 2019, 1(4):045001. [34] WANG Z, ZHANG J, LI G, et al. Anisotropy-related machining characteristics in ultra-precision diamond cutting of crystalline copper[J]. Nanomanufacturing and Metrology, 2020, 3(2):123-132. [35] WANG Z, ZHANG J, ZHANG J, et al. Towards an understanding of grain boundary step in diamond cutting of polycrystalline copper[J]. Journal of Materials Processing Technology, 2020, 276:116400. [36] WANG Z, ZHANG J, XU Z, et al. Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper[J]. Precision Engineering, 2020, 63:41-48. [37] WANG Z, ZHANG J, LI G, et al. Anisotropy-related machining characteristics in ultra-precision diamond cutting of crystalline copper[J]. Nanomanufacturing and Metrology, 2020, 3(2):123-132. [38] 张俊杰,张建国,闫永达,等.面向材料的超精密金刚石切削加工机理[J].中国科学:技术科学, 2022, 52(6):854-870. ZHANG Junjie, ZHANG Jianguo, YAN Yongda, et al. Mechanisms of material-oriented ultraprecision diamond cutting[J]. Scientia Sinica Technologica, 2022, 52(6):854-870. [39] 岳松涛.晶体铜曲面金刚石切削加工的有限元仿真和实验研究[D].哈尔滨:哈尔滨工业大学, 2020. YUE Songtao. Finite element simulation and experimental study on diamond cutting of curved surface of crystalline copper[D]. Harbin:Harbin Institute of Technology, 2020. [40] 臼木達也,川上洋司.多結晶銅の超精密切削仕上げ面に形成される結晶粒界段差の成長過程の温度依存性[J].銅と銅合金, 2020, 59(1):304-308. TATSUYA Usuki, HIROSHI Kawakami, Temperature dependence of the growth process of grain boundary steps formed on ultra-precision finished polycrystalline copper surface[J]. Journal of Japan Institute of Copper, 2020, 59(1):304-308. [41] CHEN Y, XIONG J, ZHANG G. Generation mechanism of irregular microstructures on the machined surface in single-point diamond turning[J]. International Journal of Advanced Manufacturing Technology, 2021, 113(9):2701-2714. [42] HE C L, ZONG W J, CAO Z M, et al. Theoretical and empirical coupled modeling on the surface roughness in diamond turning[J]. Materials & Design, 2015, 82:216-222. [43] HE C L, ZONG W J, SUN T. Origins for the size effect of surface roughness in diamond turning[J]. International Journal of Machine Tools and Manufacture, 2016, 106:22-42. [44] HE C L, ZONG W J, XUE C X, et al. An accurate 3D surface topography model for single-point diamond turning[J]. International Journal of Machine Tools and Manufacture, 2018, 134:42-68. [45] HE C L, ZONG W J, ZHANG J J. Influencing factors and theoretical modeling methods of surface roughness in turning process:State-of-the-art[J]. International Journal of Machine Tools and Manufacture, 2018, 129:15-26. [46] 何春雷.铝合金超精密车削表面微观形貌对衍射效应影响的研究[D].哈尔滨:哈尔滨工业大学, 2019. HE Chunlei. Investigation on the influence of ultraprecision turning aluminium alloy surface micro morphology on the diffraction effect[D]. Harbin:Harbin Institute of Technology, 2020. [47] HE C, ZONG W. Influencing factors and theoretical models for the surface topography in diamond turning process:A review[J]. Micromachines, 2019, 10(5):288. [48] NISHIGUCHI T, MAEDA Y, MASUDA M, et al. Mechanism of micro chip formation in diamond turning of Al-Mg alloy[J]. Annals of the CIRP, 1988, 37(1):117-120. [49] GOEL S, KOVALCHENKO A, STUKOWSKI A, et al. Influence of microstructure on the cutting behavior of silicon[J]. Acta Materialia, 2016, 105:464-478. [50] GOEL S, LUO X, AGRAWAL A, et al. Diamond machining of silicon:A review of advances in molecular dynamics simulation[J]. International Journal of Machine Tools and Manufacture, 2015, 88:131-164. [51] YAN J, TAKAHASHI Y, TAMAKI J, et al. Ultraprecision machining characteristics of poly-crystalline germanium[J]. JSME International Journal Series C:Mechanical Systems, Machine Elements and Manufacturing, 2006, 49(1):63-69. [52] HUANG W, YAN J. Surface formation mechanism in ultraprecision diamond turning of coarse-grained polycrystalline ZnSe[J]. International Journal of Machine Tools and Manufacture, 2020, 153:103554. [53] GENG H, WU D, WANG H, et al. Experimental and simulation study of material removal behavior in ultra-precision turning of magnesium aluminate spinel (MgAl2O4)[J]. Journal of Manufacturing Processes, 2022, 82:36-50. [54] CHEN D, WU S, HE Y, et al. A review of simulation and experiment research on cutting mechanism and cutting force in nanocutting process[J]. International Journal of Advanced Manufacturing Technology, 2022, 121(3-4):1533-1574. [55] WANG S, ZHANG T, DENG W, et al. Analytical modeling and prediction of cutting forces in orthogonal turning:a review[J]. International Journal of Advanced Manufacturing Technology, 2021:1-28. [56] 赵鹏越,郭永博,张兴群,等.晶粒度对多晶铜纳米压痕表面变形机理影响[J].哈尔滨工业大学学报, 2019, 51(7):9-15. ZHAO Pengyue, GUO Yongbo, ZHANG Xingqun, et al. Influence of grain size on the nanoidentation deformation mechanism of polycrystalline copper[J]. Journal of Harbin Institute of Technology, 2019, 51(7):9-15. [57] FURUKAWA Y, MORONUKI N. Effect of material properties on ultra precise cutting processes[J]. Annals of the CIRP, 1988, 37(1):113-116. [58] LEE W B. Prediction of microcutting force variation in ultra-precision machining[J]. Precision Engineering, 1990, 12(1):25-28. [59] LEE W B, ZHOU M. A theoretical analysis of the effect of crystallographic orientation on chip formation in micromachining[J]. International Journal of Machine Tools and Manufacture, 1993, 33(3):439-447. [60] LEE W B, CHEUNG C F, TO S. Characteristics of microcutting force variation in ultraprecision diamond turning[J]. Materials and Manufacturing Processes, 2001, 16(2):177-193. [61] LEE W B, WANG H, CHAN C Y, et al. Finite element modelling of shear angle and cutting force variation induced by material anisotropy in ultra-precision diamond turning[J]. International Journal of Machine Tools and Manufacture, 2013, 75:82-86. [62] KWAN S Y, The effect of preferred orientation in the single point diamond turning of polycrystalline materials[D]. Hongkong:The Hongkong Polytechnic University, 2005. [63] YUAN Z J, LEE W B, YAO Y X, et al. Effect of crystallographic orientation on cutting forces and surface quality in diamond cutting of single crystal[J]. Annals of the CIRP, 1994, 43(1):39-42. [64] 周明,李荣彬,袁哲俊.工件材料的各向异性对超精密切削变形及已加工表面粗糙度的影响[J].机械工程学报, 1997, 33(3):38-43. ZHOU Ming, LEE W B, YUAN Zhejun. Influence of workpiece material anisotropy on cutting deformation and machined surface roughness in ultraprecision machining[J]. Journal of Mechanical Engineering, 1997, 33(3):38-43. [65] 袁哲俊,姚英学,周明,等. SPDT超精密切削时切削变形与切削力的研究[J].机械工程学报, 1996, 32(5):1-6. YUAN Zhejun, YAO Yingxue, ZHOU Ming, et al. On the cutting deformation and cutting force in ultra-precision machining with SPDT[J]. Journal of Mechanical Engineering, 1996, 32(5):1-6. [66] MORIWAKI T, OKUDA K, SHEN G J. Study of ultraprecision orthogonal microdiamond cutting of single-crystal copper[J]. JSME International Journal. Ser. C, Dynamics, Control, Robotics, Design and Manufacturing, 1993, 36(3):400-406. [67] DING X, BUTLER D L, LIM G C, et al. Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam[J]. Journal of Micromechanics and Microengineering, 2009, 19(2):025005. [68] DING X, JARFORS A E W, LIM G C, et al. A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools[J]. Precision engineering, 2012, 36(1):141-152. [69] DING X, RAHMAN M. A study of the performance of cutting polycrystalline Al 6061 T6 with single crystalline diamond micro-tools[J]. Precision Engineering, 2012, 36(4):593-603. [70] DING X, JARFORS A E W, LIM G C, et al. A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools[J]. Precision engineering, 2012, 36(1):141-152. [71] DING X, LIM G C, CHENG C K, et al. Fabrication of a micro-size diamond tool using a focused ion beam[J]. Journal of Micromechanics and Microengineering, 2008, 18(7):075017. [72] KOTA N, OZDOGANLAR O B. Orthogonal machining of single-crystal and coarse-grained aluminum[J]. Journal of Manufacturing Processes, 2012, 14(2):126-134. [73] NAHATA S, KOTA N, OZDOGANLAR O B. Micromachining of coarse-grained aluminum including crystallographic effects[J]. Journal of Manufacturing Processes, 2020, 57:600-613. [74] WU X, LI L, HE N, et al. Investigation on the influence of material microstructure on cutting force and bur formation in the micro cutting of copper[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1):321-327. [75] WU X, LI L, HE N, et al. Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting[J]. Precision Engineering, 2016, 45:359-364. [76] LIU R, SALAHSHOOR M, MELKOTE S N, et al. A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copper[J]. Journal of Materials Processing Technology, 2015, 216:328-338. [77] VENKATACHALAM S, FERGANI O, LI X, et al. Microstructure effects on cutting forces and flow stress in ultra-precision machining of polycrystalline brittle materials[J]. Journal of Manufacturing Science and Engineering, 2015, 137(2):021020. [78] FERNÁNDEZ D S, JACKSON M, CRAWFORTH P, et al. Using machining force feedback to quantify grain size in beta titanium[J]. Materialia, 2020, 13:100856. [79] CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect-a survey of grain-size strengthening studies on pure metals[J]. International Materials Reviews, 2016, 61(8):495-512. [80] 邹章雄,项金钟,许思勇. Hall-Petch关系的理论推导及其适用范围讨论[J].物理测试, 2012, 30(6):13-17. ZOU Zhangxiong, XIANG Jinzhong, XU Siyong. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range[J]. Physics Examination and Testing, 2012, 30(6):13-17. [81] SUN Z, ZHANG T, LI P, et al. Analytical modelling of the trans-scale cutting forces in diamond cutting of polycrystalline metals considering material microstructure and size effect[J]. International Journal of Mechanical Sciences, 2021, 204:106575. [82] HE C L, ZHANG J G, REN C Z, et al. Characteristics of cutting force and surface finish in diamond turning of polycrystalline copper achieved by friction stir processing (FSP)[J]. Journal of Materials Processing Technology, 2022, 301:117451. [83] EDA H, KISHI K, UENO H. Diamond machining using a prototype ultra-precision lathe[J]. Precision Engineering, 1987, 9(3):115-122. [84] 孙富建,万上,肖罡,等.电脉冲处理及其辅助金属加工技术研究现状[J].机械工程材料, 2021, 45(12):1-6. SUN Fujian, WAN Shang, XIAO Gang, et al. Research status of pulse current treatment and assisted metal manufacturing technology[J]. Materials for Mechanical Engineering, 2021, 45(12):1-6. [85] 鲁岩娜,龙佳慧,姜雁斌,等.高性能金属材料高能电脉冲处理工艺研究进展[J].金属热处理, 2021, 46(10):1-11. LU Yanna, LONG Jiahui, JIANG Yanbin, et al. Reserach progress on high-energy electropulsing treatment of high-performance metallic materials[D]. Heat Treatment of Metals, 2021, 46(10):1-11. [86] ZHAO Z, TO S, SUN Z, et al. Microstructural effects of Ti6Al4V alloys modified by electropulsing treatment on ultraprecision diamond turning[J]. Journal of Manufacturing Processes, 2019, 39:58-68. [87] ZHAO Z, TO S, WANG J. Effects of grains and twins on deformation of commercial pure titanium in ultraprecision diamond turning[J]. Journal of Materials Processing Technology, 2019, 271:10-22. [88] ZHAO Z. Microstructure Evolution and Machinability of Electropulsing Treated Titanium Alloys in Ultra-Precision Machining[D]. Hong Kong:Hong Kong Polytechnic University, 2019. [89] ZHAO Z, TO S, YIP W S, et al. A rapid method for grain growth of Ti6Al4V alloy and its machinability[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5):2347-2361. [90] JI R, LIU Y, TO S, et al. Efficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatment[J]. Journal of Alloys and Compounds, 2018, 764:51-61. [91] YIP W S, TO S. Reduction of material swelling and recovery of titanium alloys in diamond cutting by magnetic field assistance[J]. Journal of Alloys and Compounds, 2017, 722:525-531. [92] YIP W S, TO S. Sustainable manufacturing of ultra-precision machining of titanium alloys using a magnetic field and its sustainability assessment[J]. Sustainable Materials and Technologies, 2018, 16:38-46. [93] YIP W S, TO S. Effects of magnetic field on microstructures and mechanical properties of titanium alloys in ultra-precision diamond turning[J]. Materials Research Express, 2019, 6(5):056553. [94] LOU Y, WU H. Improving machinability of titanium alloy by electro-pulsing treatment in ultra-precision machining[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5):2299-2304. [95] PEI L, WU H. Effect of ultrasonic vibration on ultra-precision diamond turning of Ti6Al4V[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(1):433-440. [96] 吴红兵,史云龙,杜雪,等.电脉冲处理对钛合金超精密切削的影响[J].红外与激光工程, 2016, 45(2):226-229. WU Hongbing, SHI Yunlong, DU Xue, et al. Effects of electropulsing treatment on ultra-precision cutting of titanium alloy Ti6Al4V[J]. Infrared and Laser Engineering, 2016, 45(2):226-229. [97] TAUHIDUZZAMAN M, VELDHUIS S C. Effect of material microstructure and tool geometry on surface generation in single point diamond turning[J]. Precision Engineering, 2014, 38(3):481-491. [98] 杨洋,王罡,俞建超,等.无氧铜超精加工表面微观形貌的分形维数表征[J].材料导报, 2017, 31(3):52-56. YANG Yang, WANG Gang, YU Jianchao, et al. Fractal dimension characterization on surface microtopography of ultra-precision machined oxygen-free copper[J]. Material Reports, 2017, 31(3):52-56. [99] 李敏,袁巨龙,吴喆,等.复杂曲面零件超精密加工方法的研究进展[J].机械工程学报, 2015, 51(5):178-191. LI Min, YUAN Julong, WU Zhe, et al. Progress in ultra-precision machining methods of complex curved parts[J]. Journal of Mechanical Engineering, 2015, 51(5):178-191. [100] SHI J, WANG Y, YANG X. Nano-scale machining of polycrystalline coppers-effects of grain size and machining parameters[J]. Nanoscale research letters, 2013, 8(1):1-18. [101] GAO J, LUO X C, FANG F Z, et al. Fundamentals of atomic and close-to-atomic scale manufacturing:A review[J]. International Journal of Extreme Manufacturing, 2022, 4(1):012001. [102] 王振忠,施晨淳,张鹏飞,等.先进光学制造技术最新进展[J].机械工程学报, 2021, 57(8):23-56. WANG Zhenzhong, SHI Chenchun, ZHANG Pengfei, et al. Recent progress of advanced optical manufacturing technology[J]. Journal of Mechanical Engineering, 2021, 57(8):23-56. |
[1] | 刘鑫, 张俊, 徐斌斌, 刘弘光, 赵万华. 激光辅助铣削过程的预热温度场调控方法研究[J]. 机械工程学报, 2024, 60(9): 218-228. |
[2] | 朱少禹, 张向军, 孙军, 王大刚. 粗糙表面轴承微极流体润滑的平均流量模型[J]. 机械工程学报, 2024, 60(7): 203-211. |
[3] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[4] | 冯勇, 周豪杰, 周智远, 贾晓林, 秦育彦, 徐伟伟. 低频扭转振动辅助螺旋铣孔切削力模型研究[J]. 机械工程学报, 2024, 60(5): 390-402. |
[5] | 杜宇超, 梁志强, 王飞, 李娟, 刘月红, 赵旭, 苏志朋, 马悦, 陈锐, 王西彬. PCD微细铣磨刀具切削力建模与加工性能研究[J]. 机械工程学报, 2024, 60(19): 298-309. |
[6] | 温雪龙, 赵正豪, 巩亚东, 李俊鹏. FeCoNiCrAlx高熵合金铣削表面质量影响因素实验研究[J]. 机械工程学报, 2024, 60(17): 367-378. |
[7] | 张园, 徐念伟, 鲍岩, 董志刚, 韩松, 郭东明, 康仁科. 轴向超声辅助端面磨削金属表面形貌及粗糙度预测[J]. 机械工程学报, 2023, 59(5): 307-316. |
[8] | 何春雷, 张建国, 王姝淇, 任成祖. 基于多波长散射光特性的铝合金超精密车削表面粗糙度测量方法研究[J]. 机械工程学报, 2023, 59(3): 308-317. |
[9] | 张瑜, 康仁科, 高尚, 黄金星, 朱祥龙. 湿式机械化学磨削单晶硅的软磨料砂轮及其磨削性能[J]. 机械工程学报, 2023, 59(3): 328-336. |
[10] | 黄景山, 刘国亮, 孙浩, 姚斌, 金林, 陈彬强, 曹新城, 王山城, 许浩, 蔡志钦. C60纳米粒子切削液对15Cr14Co12Mo5Ni2WA齿轮钢切削特性的影响研究[J]. 机械工程学报, 2023, 59(23): 358-371. |
[11] | 郭国强, 杨博宇, 李建华, 成群林, 王大中, 林立芳, 沈彬. 基于切削运动学分析的铣削加工表面粗糙度预测方法研究[J]. 机械工程学报, 2023, 59(13): 314-324. |
[12] | 滕洪钊, 邓朝晖, 吕黎曙, 谷倩微, 刘涛, 卓荣锦. 多传感器信息融合的加工过程状态监测研究[J]. 机械工程学报, 2022, 58(6): 26-41. |
[13] | 张嘉恒, 胡志力. 铝合金搅拌摩擦焊接头组织热稳定性[J]. 机械工程学报, 2022, 58(6): 73-80. |
[14] | 李波波, 李晓强, 王磊, 魏培, 卢秉恒. 一种低功率实现高表面质量的细丝增材制造试验研究[J]. 机械工程学报, 2022, 58(21): 297-305. |
[15] | 陈淑慧, 张梦云, 谭祾月, 李明, 杭弢. 添加剂及热处理对钴互连镀层电性能的影响机理研究[J]. 机械工程学报, 2022, 58(2): 66-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||