[1] 齐振超,刘书暖,程晖,等. 基于三维多相有限元的CFRP细观切削机理研究[J]. 机械工程学报,2016,52(15):170-176. QI Zhenchao,LIU Shunuan,CHENG Hui,et al. Research on the mesoscopic cutting mechanism of CFRP based on three-dimensional multiphase finite element models[J]. Journal of Mechanical Engineering,2016,52(15):170-176. [2] NING F D,CONG W L,QIU J J,et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling[J]. Composites Part B-Engineering,2015,80:369-378. [3] 王东,焦锋. 基于横刃轴向力的CFRP钻孔分层临界进给量研究[J]. 机械工程学报,2021,57(3):255-266. WANG Dong,JIAO Feng. Study on critical feed rate of delamination based on thrust force of chisel edge during CFRP drilling[J]. Journal of Mechanical Engineering,2021,57(3):255-266. [4] GAO T,LI C H,WANG Y Q,et al. Carbon fiber reinforced polymer in drilling:From damage mechanisms to suppression[J]. Composite Structures,2022,286:115232. [5] 王春浩,李鹏南,李树健,等. CFRP钻削加工过程的分层缺陷研究进展[J]. 兵器材料科学与工程,2019,42(6):109-115. WANG Chunhao,LI Pengnan,LI Shujian,et al. Research progress on delamination defect in CFRP cutting process[J]. Ordnance Material Science and Engineering. 2019,42(6):109-115. [6] 陶正瑞,陈杰,安庆龙,等. CFRP及叠层结构螺旋铣孔专用刀具切削性能评价[J]. 工具技术,2020,54(1):22-27. TAO Zhengrui,CHEN Jie,AN Qinglong,et al. Cutting performance evaluation of helical milling specialized tool for CFRP and CFRP/titanium alloy[J]. Tool Engineering. 2020,54(01):22-27. [7] 范文涛,陈燕,陈逸佳,等. CFRP铣削加工三维形貌研究[J]. 航空制造技术,2021,64(9):62-67. FAN Wentao,CHEN Yan,CHEN Yijia,et al. Research on 3D surface topography in milling of CFRP[J]. Aeronautical Manufacturing Technology,2021,64(9):62-67. [8] 晏超仁,陈燕,郑凯,等. 钎焊金刚石铣磨刀具磨粒粒度尺寸与排布间距对CFRP磨削质量的影响[J]. 金刚石与磨料磨具工程,2017,37(4):6-10,21. YAN Chaoren,CHEN Yan,ZHENG Kai,et al. Influence of grit size and arranging distance on workpiece integrity when grinding CFRP with brazed diamond milling tool[J]. Diamond & Abrasives Engineering,2017,37(4):6-10,21. [9] 黄保腾,张彦彬,王晓铭,等. SG砂轮磨削镍基合金GH4169砂轮磨损机理与磨削性能的实验评价[J]. 表面技术,2021,50(12):62-70. HUANG Baoteng,ZHANG Yanbin,WANG Xiaoming,et al. Experimental evaluation of wear mechanism and grinding performance of SG wheel in machining nickel-based alloy GH4169[J]. Surface Technology,2021,50(12):62-70. [10] 丁文锋,苗情,李本凯,等. 面向航空发动机的镍基合金磨削技术研究进展[J]. 机械工程学报,2019,55(1):189-215. DING Wenfeng,MIAO Qing,LI Benkai,XU Jiuhua. Review on grinding technology of nickel-based superalloys used for aero-engine[J]. Journal of Mechanical Engineering,2019,55(1):189-215. [11] GAO T,ZHANG Y B,LI C H,et al. Fiber-reinforced composites in milling and grinding:machining bottlenecks and advanced strategies[J]. Frontiers of Mechanical Engineering,2022,In press. DOI:10.1007/s11465-022-0680-8. [12] WANG H,SUN J,LI J,et al. Roughness modelling analysis for milling of carbon fibre reinforced polymer composites[J]. Materials Technology,2015,30(A1):A46-A50. [13] LUNA G G,AXINTE D,NOVOVIC D. Influence of grit geometry and fibre orientation on the abrasive material removal mechanisms of SiC/SiC Ceramic Matrix Composites (CMCs)[J]. International Journal of Machine Tools & Manufacture,2020,157:103580. [14] 詹迪雷,李鹏南,李树健,等. CFRP切削过程中的监测控制研究进展[J]. 宇航材料工艺,2021,51(2):11-18. ZHAN Dilei,LI Pengnan,LI Shujian,et al. Research progress of monitoring and control in cutting process of CFRP[J]. Aerospace Materials & Technology,2021,51(2):11-18. [15] HUANG B T,LI C H,ZHANG Y B,et al. Advances in fabrication of ceramic corundum abrasives based on sol-gel process[J]. Chinese Journal of Aeronautics,2021,34(6):1-17. [16] 陈光,刘见,戈家影,等. 基于运动学及力热分析的CFRP超声振动辅助螺旋铣孔质量影响机制[J]. 机械工程学报,2021,57(1):199-209. CHEN Guang,LIU Jian,GE Jiaying,et al. Experimental study on ultrasonic vibration helical milling of CFRP based on kinematic and thermal-mechanical analysis[J]. Journal of Mechanical Engineering,2021,57(1):199-209. [17] ZHANG Y B,LI C H,JI H J,et al. Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms[J]. International Journal of Machine Tools & Manufacture,2017,122:81-97. [18] 张高峰,何杨,鲁炎鑫,等. 碳纤维增强复合材料低温冷风磨削试验研究[J]. 中国机械工程,2016,27(20):2779-2784,2790. ZHANG Gaofeng,HE Yang,LU Yanxin,et al. Experimental study on cryogenic cold air grinding of carbon fibre reinforced plastics[J]. China Mechanical Engineering,2016,27(20):2779-2784,2790. [19] 范宝朋,陈燕,陈斌斌,等. 碳纤维复合材料的磨削热分配比仿真研究[J]. 金刚石与磨料磨具工程,2019,39(1):66-71. FAN Baopeng,CHEN Yan,CHEN Binbin,et al. Finite element analysis on heat distribution ratio during grinding CFRP[J]. Diamond & Abrasives Engineering,2019,39(1):66-71. [20] 王福吉,殷俊伟,贾振元,等. CFRP复合材料铣削力、温度及表层损伤分析[J]. 机械工程学报,2018,54(3):186-195. WANG Fuji,YIN Junwei,JIA Zhenyuan,et al. Measurement and analysis of cutting force,temperature and cutting-induced top-layer damage in edge trimming of CFRPs[J]. Journal of Mechanical Engineering,2018,54(3):186-195. [21] 殷俊伟,贾振元,王福吉,等. 基于CFRP切削过程仿真的面下损伤形成分析[J]. 机械工程学报,2016,52(17):58-64. YIN Junwei,JIA Zhenyuan,WANG Fuji,et al. FEM simulation analysis of subsurface damage formation based on continuously cutting process of CFRP[J]. Journal of Mechanical Engineering,2016,52(17):58-64. [22] HU N S,ZHANG L C. A study on the grindability of multidirectional carbon fibre-reinforced plastics[J]. Journal of Materials Processing Technology,2003,140(1-3):152-156. [23] LIU S L,CHEN T,WU C Q. Rotary ultrasonic face grinding of carbon fiber reinforced plastic (CFRP):a study on cutting force model[J]. International Journal of Advanced Manufacturing Technology,2017,89(1-4):847-856. [24] KODAMA H,OKAZAKI S,JIANG Y F,et al. Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2020,65:53-63. [25] SHEIKH-AHMAD J,MOHAMMED J. Optimization of process parameters in diamond abrasive machining of carbon fiber-reinforced epoxy[J]. Materials and Manufacturing Processes,2014,29(11-12):1361-1366. [26] 刘树良,陈涛,魏宇祥,等. 旋转超声振动端面磨削CFRP表面质量研究[J]. 航空制造技术,2016(15):57-61. LIU Shuliang,CHEN Tao,WEI Yuxiang,et al. Study on surface quality of CFRP after rotary ultrasonic face grinding[J]. Aeronautical Manufacturing Technology. 2016(15):57-61. [27] WANG H,PEI Z J,CONG W L. A mechanistic cutting force model based on ductile and brittle fracture material removal modes for edge surface grinding of CFRP composites using rotary ultrasonic machining[J]. International Journal of Mechanical Sciences,2020,176:105551. [28] WANG H,PEI Z J,CONG W L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration[J]. International Journal of Machine Tools & Manufacture,2020,152:103540. [29] QU S S,GONG Y D,YANG Y Y,et al. Mechanical model and removal mechanism of unidirectional carbon fibre-reinforced ceramic composites[J]. International Journal of Mechanical Sciences,2020,173:105465. [30] QU S S,YAO P,GONG Y D,et al. Modelling and grinding characteristics of unidirectional C-SiCs[J]. Ceramics International,2022,48(6):8314-8324. [31] 杨旭东,安涛,邹田春,等. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程,2019,47(4):84-91. YANG Xudong,AN Tao,ZOU Tianchun,et al. Effect of hygrothermal environment on mechanical properties and damage[J]. Journal of Materials Engineering,2019,47(4):84-91. [32] 邹凡,王贤锋,张烘州,等. 超临界二氧化碳低温铣削CFRP复合材料试验研究[J]. 航空制造技术,2021,64(19):14-19. ZOU Fan,WANG Xianfeng,ZHANG Hongzhou,et al. Experimental investigation on milling characteristic of CFRP composites under supercritical carbon dioxide based cryogenic environment[J]. Aeronautical Manufacturing Technology. 2021,64(19):14-19. [33] 刘培基,刘飞,王旭,等. 绿色制造的理论与技术体系及其新框架[J]. 机械工程学报,2021,57(19):165-179. LIU Peiji,LIU Fei,WANG Xu,et al. The theory and technology system of green manufacturing and their new frameworks[J]. Journal of Mechanical Engineering,2021,57(19):165-179. [34] 秦旭达,唐心凯,葛恩德. CFRP三维铣削仿真模型的建立及层间损伤分析[J]. 宇航材料工艺,2020,50(1):22-29. QIN Xuda,TANG Xinkai,GE Ende,et al. Establishment of 3D milling simulation model for CFRP and analysis of interlaminar damage[J]. Aerospace Materials & Technology,2020,50(1):22-29. [35] 王义文,许成阳,许家忠,等. CFRP加工用内排屑钻头排屑条件的仿真分析及试验研究[J]. 机械工程学报,2019,55(5):223-231. WANG Yiwen,XU Chengyang,XU Jiazhong,et al. Simulation analysis and experimental study on chip removal conditions of internal chip removal bits for CFRP machining[J]. Journal of Mechanical Engineering,2019,55(5):223-231. [36] 贾东洲,张乃庆,刘波,等. 静电雾化微量润滑粒径分布特性与磨削表面质量评价[J]. 金刚石与磨料磨具工程,2021,41(3):89-95. JIA Dongzhou,ZHANG Naiqing,LIU Bo,et al. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation[J]. Diamond & Abrasives Engineering,2021,41(3):89-95. [37] DUAN Z J,LI C H,ZHANG Y B,et al. Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication[J]. Chinese Journal of Aeronautics,2021,34(6):33-53. [38] LIU M Z,LI C H,ZHANG Y B,et al. Cryogenic minimum quantity lubrication machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2021,16(4):649-697. [39] 王大中,吴淑晶,林靖朋,等. 基于MQL的超声椭圆振动微切削Inconel718的机理研究[J]. 机械工程学报,2021,57(9):264-272. WANG Dazhong,WU Shujing,LIN Jingpeng,et al. Research on ultrasonic elliptical vibration micro-cutting Inconel718 based on minimum quantity lubrication[J]. Journal of Mechanical Engineering,2021,57(9):264-272. [40] 施壮,郭树明,刘红军,等. 生物润滑剂微量润滑磨削GH4169镍基合金性能实验评价[J]. 表面技术,2021,50(12):71-84. SHI Zhuang,GUO Shuming,LIU Hongjun,et al. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy[J]. Surface Technology,2021,50(12):71-84. [41] 刘明政,李长河,曹华军,等. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程,2022,33(5):529-550. LIU Mingzheng,LI Changhe,CAO Huajun,et al. Research progresses and applications of CMQL machining technology[J]. China Mechanical Engineering,2022,33(5):529-550. [42] WANG X M,LI C H,ZHANG Y B,et al. Vegetable oil-based nanofluid minimum quantity lubrication turning:Academic review and perspectives[J]. Journal of Manufacturing Processes,2020,59:76-97. [43] 袁松梅,韩文亮,朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报,2019,55(5):175-185. YUAN Songmei,HAN Wenliang,ZHU Guangyuan,et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering,2019,55(5):175-185. [44] 袁松梅,朱光远,王莉. 绿色切削微量润滑技术润滑剂特性研究进展[J]. 机械工程学报,2017,53(17):131-140. YUAN Songmei,ZHU Guangyuan,WANG Li. Recent progress on lubricant characteristics of minimum quantity lubrication (MQL) technology in green cutting[J]. Journal of Mechanical Engineering,2017,53(17):131-140. [45] 吕涛,黄水泉,胡晓冬,等. 静电微量润滑气雾特性及其切削加工性能研究[J]. 机械工程学报,2019,55(1):129-138. LÜ Tao,HUANG Shuiquan,HU Xiaodong,et al. Study on aerosol characteristics of electrostatic minimum quantity lubrication and its turning performance[J]. Journal of Mechanical Engineering,2019,55(1):129-138. [46] HADAD M,SADEGHI B. Thermal analysis of minimum quantity lubrication-MQL grinding process[J]. International Journal of Machine Tools & Manufacture,2012,63:1-15. [47] SADEGHI M H,HADDAD M J,TAWAKOLI T,et al. Minimal quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy[J]. International Journal of Advanced Manufacturing Technology,2009,44(5-6):487-500. [48] 贾东洲,李长河,张彦彬,等. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant[J]. Journal of Mechanical Engineering. 2022,58(5):198-211. [49] 张彦彬,李长河,贾东洲,等. MoS2/CNTs混合纳米流体微量润滑磨削加工表面质量试验评价[J]. 机械工程学报,2018,54(1):161-170. ZHANG Yanbin,LI Changhe,JIA Dongzhou,et al. Experimental evaluation of the workpiece surface quality of MoS2/CNT nanofluid for minimal quantity lubrication in grinding[J]. Journal of Mechanical Engineering,2018,54(1):161-170. [50] WANG X M,LI C H,ZHANG Y B,et al. Tribology of enhanced turning using biolubricants:A comparative assessment[J]. Tribology International,2022,174:107766. [51] CUI X,LI C H,DING W F,et al. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant:From mechanisms to application[J]. Chinese Journal of Aeronautics,2021,in press.DOI:10.1016/j.cja.2021.08.011. [52] 赵绪峰,于天彪,李长河,等. 纳米MoS2含量对纳米微量润滑磨削CFRPs的影响[J]. 东北大学学报,2019,40(8):1127-1130,1138. ZHAO Xufeng,YU Tianbiao,LI Changhe,et al. Effect of nano MoS2 concentrations on nano minimum quantity lubrication in CFRPs grinding[J]. Journal of Northeastern University,2019,40(8):1127-1130,1138. [53] QU S S,GONG Y D,YANG Y Y,et al. An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites[J]. Journal of Cleaner Production,2020,249:119353. [54] GAO T,LI C H,JIA D Z,et al. Surface morphology assessment of CFRP transverse grinding using CNT nanofluid minimum quantity lubrication[J]. Journal of Cleaner Production,2020,277:123328. [55] GAO T,LI C H,YANG M,et al. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant[J]. Journal of Materials Processing Technology,2021,290:116976. [56] GAO T,ZHANG Y B,LI C H,et al. Grindability of carbon fiber reinforced polymer using CNT biological lubricant[J]. Scientific Reports,2021,11(1):22535. [57] 杨敏,李长河,张彦彬,等. 神经外科颅骨磨削温度场预测新模型[J]. 机械工程学报,2018,54(23):215-222. YANG Min,LI Changhe,ZHANG Yanbin,et al. A new model for predicting neurosurgery skull bone grinding temperature field[J]. Journal of Mechanical Engineering,2018,54(23):215-222. [58] 杨敏,李长河,张彦彬,等. 骨外科纳米粒子射流喷雾式微磨削温度场理论分析及试验[J]. 机械工程学报,2018,54(18):194-203. YANG Min,LI Changhe,ZHANG Yanbin,et al. Theoretical analysis and experimental research on temperature field of microscale bone grinding under nanoparticle jet mist cooling[J]. Journal of Mechanical Engineering,2018,54(18):194-203. [59] YANG M,LI C H,LUO L,et al. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling[J]. International Communications in Heat and Mass Transfer,2021,125:105317. [60] YANG M,LI C H,SAID Z,et al. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding[J]. Journal of Manufacturing Processes,2021,71:501-514. [61] GAO C Y,XIAO J Z,ZHANG L C,et al. On the static and dynamic properties of fiber-reinforced polymer composites:A three-phase constitutive model[J]. Journal of Thermoplastic Composite Materials,2017,30(11):1560-1577. [62] DENG S,YE L,MAI Y W,et al. Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests[J]. Composites Part A:Applied Science and Manufacturing,1998,29(4):423-434. [63] 李伯民,赵波. 现代磨削技术[M]. 北京:机械工业出版社,2003. LI Bomin, ZHAO Bo. Modern grinding technology[M]. Beijing:China Machine Press,2003. [64] XU W X,ZHANG L C. On the mechanics and material removal mechanisms of vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools & Manufacture,2014,80-81:1-10. [65] 乔生儒,曾燮榕,白世鸿. 复合材料细观力学[M]. 西安:西北工业大学出版社,1997. QIAO Shengru,ZENG Xierong,BAI Shihong. Meso-mechanics of composite materials[M]. Xi'an:Northwestern Polytechnical University Press,1997. [66] VOSS R,SEEHOLZER L,KUSTER F,et al. Analytical force model for orthogonal machining of unidirectional carbon fibre reinforced polymers (CFRP) as a function of the fibre orientation[J]. Journal of Materials Processing Technology,2019,263:440-469. [67] GAO T,LI C H,ZHANG Y B,et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants[J]. Tribology International,2019,131:51-63. |