• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (13): 325-342.doi: 10.3901/JME.2023.13.325

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

纳米增强生物润滑剂CFRP材料去除力学行为与磨削力预测模型

高腾1, 李长河1, 张彦彬1, 杨敏1, 曹华军2, 王大中3, 刘新4, 周宗明5, 刘波6   

  1. 1. 青岛理工大学机械与汽车工程学院 青岛 266520;
    2. 重庆大学机械与运载工程学院 重庆 400044;
    3. 上海工程技术大学航空运输学院 上海 201620;
    4. 大连理工大学机械工程学院 大连 116024;
    5. 汉能(青岛)润滑科技有限公司 青岛 266200;
    6. 四川明日宇航工业有限责任公司 什邡 618400
  • 收稿日期:2022-07-15 修回日期:2023-02-05 出版日期:2023-07-05 发布日期:2023-08-15
  • 通讯作者: 李长河(通信作者),男,1966年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail:sy_lichanghe@163.com
  • 作者简介:高腾,男,1993年出生,博士研究生。主要研究方向为洁净与精密制造。E-mail:qdlg_gt@163.com
  • 基金资助:
    国家重点研发计划(2020YFB2010500)、国家自然科学基金(51975305,51905289)、山东省自然科学基金(ZR2020KE027)和山东省重大创新工程(2019JZZY020111)资助项目。

Mechanical Behavior of Material Removal and Predictive Force Model for CFRP Grinding Using Nano Reinforced Biological Lubricant

GAO Teng1, LI Changhe1, ZHANG Yanbin1, YANG Min1, CAO Huajun2, WANG Dazhong3, LIU Xin4, ZHOU Zongming5, LIU Bo6   

  1. 1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520;
    2. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    3. School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620;
    4. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024;
    5. Hanergy(Qingdao) Lubrication Technology Co., Ltd., Qingdao 266200;
    6. Sichuan Future Aerospace Industry LLC., Shifang 618400
  • Received:2022-07-15 Revised:2023-02-05 Online:2023-07-05 Published:2023-08-15

摘要: 碳纤维增强树脂基复合材料(CFRP)由于比强度和比刚度高且能实现材料结构性能一体化设计制造,已成为航空航天装备减重的优选材料。精密磨削是CFRP成形后保证装配公差和精度必需的加工方法。切削液解决了磨削界面强热力作用下冷却润滑和排屑等问题,但CFRP易吸湿膨胀导致力学性能降低限制了浇注式润滑的应用。而干切削易造成表面完整性恶化和粉尘污染,以极少量生物润滑剂雾化浸润切削区的准干式切削加工是必然选择。然而,对于非均质各向异性的CFRP的精密平面磨削材料去除力学行为尚不明确。基于此,提出了基于纳米增强生物润滑剂微量润滑的CFRP磨削方法。首先,分析了磨削区磨粒的几何学运动学规律,研究了随机磨粒对多相异质CFRP的随机碳纤维的磨削干涉状态。其次,揭示了磨粒纤维的接触力学行为和磨粒对纤维断面的挤压材料去除机理。分析了单侧约束纤维的弯扭破坏及其所致界面相剥离,通过多纤维块状去除力学行为分析确定了纤维束去除中纤维断裂平均应力。建立了磨粒与纤维的椭圆域接触力学模型,和基于拉伸断裂破坏的单纤维切削力学模型。最后,考虑砂轮工件界面摩擦建立了不同工况的CFRP平面磨削力模型并进行了实验验证,最优条件下模型误差14.73%。结果表明,纳米增强生物润滑剂微量润滑的磨削力最低,法向和切向力相比干磨削分别降低了22.93%和55.79%。

关键词: 磨削, CFRP, 磨削力, 微量润滑, 生物润滑剂

Abstract: Carbon fiber reinforced polymers (CFRP) have become the preferred material for weight reduction of aerospace equipment due to their high specific strength and stiffness, and their ability to integrate design and manufacture of material structure and performance. Precision grinding is a necessary machining method to ensure assembly tolerance and accuracy after CFRP forming. Cutting fluid solves the problems of cooling lubrication and chip removal under the strong mechanical-thermal coupling of grinding interface. However, CFRP is easy to absorb moisture and expand, resulting in the reduction of mechanical properties, which limits the application of flood lubrication. Dry cutting is prone to cause surface integrity deterioration and dust pollution. Quasi-dry cutting is an inevitable choice to use a minute quantity of biological lubricant to atomize and infiltrate the cutting area. However, the mechanical behavior of material removal in precision surface grinding of heterogeneous and anisotropic CFRP remains unclear. Based on the above, a CFRP grinding method using nano-enhanced bio-lubricant minimum quantity lubrication is proposed. Firstly, the geometric kinematics of grains in the grinding zone is analyzed, and the grinding interference state of random grains on random fibers of heterogeneous CFRP is studied. Secondly, the contact mechanical behavior and the removal mechanism of grains on fiber cross-section are revealed. The bending and torsion failure of unilaterally restrained fibers and the interfacial phase debonding are analyzed. The average stress of fiber fracture during fiber bundle removal is determined by analyzing the mechanical behavior of multi-fiber bulk removal. The mechanical model of contact between grains and fibers in elliptical domain, and the mechanical model of single fiber cutting based on tensile fracture failure are established. Finally, considering the interface friction between the grinding wheel and the workpiece, the grinding force models under different lubrication conditions are established and verified by experiments. The model error is 14.73% under the optimal conditions. The results show that the lowest grinding force is obtained with the nano-enhanced bio-lubricant minimum quantity lubrication method, the normal and tangential forces are reduced by 22.93% and 55.79%, respectively, comparing with dry grinding.

Key words: grinding, CFRP, grinding force, minimum quantity lubrication, biological lubricant

中图分类号: