• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (9): 323-337.doi: 10.3901/JME.2024.09.323

• 微量润滑加工 • 上一篇    下一篇

扫码分享

磁力牵引纳米润滑剂微量润滑磨削力模型与验证

崔歆1, 李长河1, 张彦彬1, 杨敏1, 周宗明2, 刘波3, 王春锦4   

  1. 1. 青岛理工大学机械与汽车工程学院 青岛 266520;
    2. 汉能(青岛)润滑科技有限公司 青岛 266200;
    3. 四川明日宇航工业有限责任公司 什邡 618400;
    4. 香港理工大学超精密加工技术国家重点实验室 中国香港 999077
  • 收稿日期:2023-05-26 修回日期:2023-09-12 出版日期:2024-05-05 发布日期:2024-06-18
  • 作者简介:崔歆,女, 1990 年出生,博士,副教授。主要研究方向为洁净精密制造。E-mail: cxinxin5240@163.com;李长河(通信作者),男, 1966 年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail: sy_lichanghe@163.com
  • 基金资助:
    国家自然科学基金(52105457,51975305)、泰山学者工程专项经费(tsqn202211179)和山东省青年科技人才托举工程(SDAST2021qt12)资助项目。

Force Model and Verification of Magnetic Traction Nanolubricant Grinding

CUI Xin1, LI Changhe1, ZHANG Yanbin1, YANG Min1, ZHOU Zongming2, LIU Bo3, WANG Chunjin4   

  1. 1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520;
    2. Hanergy (Qingdao) Lubrication Technology Co. Ltd., Qingdao 266200;
    3. Sichuan Future Aerospace Industry Co. Ltd., Shifang 618400;
    4. The Hong Kong Polytechnic University, State Key Laboratory of Ultra-precision Machining Technology, Hong Kong, China 999077
  • Received:2023-05-26 Revised:2023-09-12 Online:2024-05-05 Published:2024-06-18

摘要: 磨削是获得航空航天难加工材料高表面质量和加工精度不可或缺的方法,尤其是以大切削弧长为特点的高效率磨削在航空航天领域获得广泛的应用。但是,润滑剂在大切削弧长工件/磨粒界面牵引动力不足,导致浸润性能和冷却润滑缺失、工件表面完整性恶化。基于此,提出磁力牵引纳米润滑剂微量润滑磨削新工艺,但磁场作用下的磁性纳米润滑剂微界面浸润动力学尚不明确,磁场力赋能作用下的磨削力模型尚未建立。首先,揭示磨削区磁力牵引润滑剂输运动力学规律,建立磁场作用下的润滑剂浸润速度与流量模型。其次,提出基于截角六面体磨粒几何模型的砂轮建模方法,揭示单颗磨粒力学行为并建立切削力数学模型。最后,进行磁力牵引纳米润滑剂微量润滑磨削钛合金磨削力模型的实验验证。结果表明,磁力牵引纳米润滑剂微量润滑磨削新工艺能显著提升润滑剂浸润速度和流量,相比无磁场,磁场强度为5× 105 A/m时法向和切向磨削力分别降低31.8%和74.3%;磨削力预测值与试验值吻合度较好,切向和法向磨削力最小平均偏差分别为9.2%和5.7%。研究为磁力牵引纳米润滑剂微量润滑磨削提供理论依据,为难加工材料的大弧长磨削的高表面完整性要求提供技术支持。

关键词: 磨削, 磁性纳米润滑剂, 磁力牵引, 动力学行为, 力学模型

Abstract: Grinding is an indispensable method to obtain high surface quality and machining precision of difficult-to-machine materials in aerospace field. Especially for high efficiency grinding characterized by large contact length has been widely used in aerospace field. However, the lubricant traction energy is insufficient in workpiece/abrasive interface, which leads to poor cooling lubrication and infiltration performance, and deterioration of workpiece surface integrity. Based on this, a new magnetic traction nanolubricant grinding is proposed. However, the micro-interface transport mechanics of magnetic nanolubricant under the magnetic field is not clear, and the grinding force model with the influence of magnetic field has not been established. Firstly, the mechanical law of magnetic traction lubricant transport in grinding zone is revealed, and the model of lubricant infiltration velocity and flow rate with the influence of magnetic field is established. Secondly, a grinding wheel model is established based on the truncated hexahedron abrasive, which revealed the interference mechanical behavior of materials for a single abrasive and established the mechanical model. Finally, a grinding force model of magnetic traction nanolubricant is established for titanium alloy grinding and verified by experiments. The results show that the introduction of magnetic field can significantly increase the wetting speed and flow rate of lubricant. When the magnetic field intensity is 5×105 A/m, the normal and tangential grinding forces decrease by 31.8% and 74.3%, respectively, compared with no magnetic field. And the minimum mean deviation of tangential and normal grinding force is 9.2% and 5.7%, respective. A theoretical basis for magnetic traction nanolubricant grinding and technical support for high surface integrity requirements of large contact length grinding of difficult materials were provided.

Key words: grinding, magnetic nanolubricant, magnetic traction, dynamics behavior, mechanical model

中图分类号: