机械工程学报 ›› 2024, Vol. 60 ›› Issue (9): 286-322.doi: 10.3901/JME.2024.09.286
王晓铭1, 李长河1, 杨敏1, 张彦彬1, 刘明政1, 高腾1, 崔歆1, 王大中2, 曹华军3, 陈云4, 刘波5
收稿日期:
2023-05-19
修回日期:
2023-12-01
出版日期:
2024-05-05
发布日期:
2024-06-18
作者简介:
王晓铭,男, 1997 年出生,博士研究生。主要研究方向为洁净精密制造。E-mail: qd_wangxiaoming@163.com;李长河(通信作者),男, 1966 年出生,博士,教授,博士研究生导师。主要研究方向为智能与洁净精密制造。E-mail: sy_lichanghe@163.com
基金资助:
WANG Xiaoming1, LI Changhe1, YANG Min1, ZHANG Yanbin1, LIU Mingzheng1, GAO Teng1, CUI Xin1, WANG Dazhong2, CAO Huajun3, CHEN Yun4, LIU Bo5
Received:
2023-05-19
Revised:
2023-12-01
Online:
2024-05-05
Published:
2024-06-18
摘要: 纳米生物润滑剂作为替代矿物型润滑介质的绿色微量润滑剂,已成为学术界与工业界的研究与关注焦点。然而,纳米生物润滑剂微量润滑加工物理学作用机制尚不清楚,难以为其工业化应用提供精准指导与选用原则。为解决上述需求与技术问题,综述了纳米生物润滑剂组分及物理特性,揭示了纳米增强相、基础流体、添加剂对加工性能的影响规律,阐述了纳米增强相在纳米生物润滑剂中的动力学行为与分散机制。其次,揭示了多能场雾化机制、切/磨削区流场分布及微液滴浸润动力学行为,发明了微量润滑新型供给与雾化装置。进一步地,分析了切/磨削加工材料去除热物理机制,研究了先进的多场赋能热损伤抑制策略,构建了纳米生物润滑剂微量润滑加工技术体系。结果表明,纳米生物润滑剂在热源抑制与热耗散特性调控方面效果显著,多场赋能纳米生物润滑剂微量润滑可作为浇注式加工的替代工艺,采用断续有序的凹槽织构砂轮辅助质量分数为2.5%的MWCNTs-棕榈油纳米生物润滑剂微量润滑磨削单晶镍基高温合金DD5,与传统的浇注式磨削工艺相比,磨削力可降低12%,磨削温度可降低9%,表面粗糙度值可降低6%。展望了纳米生物润滑剂发展路线图,为工业界与学术界提供技术支持与理论指导。
中图分类号:
王晓铭, 李长河, 杨敏, 张彦彬, 刘明政, 高腾, 崔歆, 王大中, 曹华军, 陈云, 刘波. 纳米生物润滑剂微量润滑加工物理机制研究进展[J]. 机械工程学报, 2024, 60(9): 286-322.
WANG Xiaoming, LI Changhe, YANG Min, ZHANG Yanbin, LIU Mingzheng, GAO Teng, CUI Xin, WANG Dazhong, CAO Huajun, CHEN Yun, LIU Bo. Research Progress on the Physical Mechanism of Minimum Quantity Lubrication Machining with Nano-biolubricants[J]. Journal of Mechanical Engineering, 2024, 60(9): 286-322.
[1] 刘培基,刘飞,王旭,等. 绿色制造的理论与技术体系及其新框架[J]. 机械工程学报,2021,57(19):165-179. LIU Peiji,LIU Fei,WANG Xu,et al. The theory and technology system of green manufacturing and their new frameworks [J]. Journal of Mechanical Engineering,2021,57(19):165-179. [2] KLOCKE F,EISENBLTTER G. Dry cutting[J]. CIRP Annals-Manufacturing Technology,1997,46(2):519-526. [3] 朱利斌,曹华军,黄海鸿,等. 干切削机床压缩空气冷却系统热力学模型及热平衡调控方法[J]. 机械工程学报,2019,55(5):204-211. ZHU Libin,CAO Huajun,HUANG Haihong,et al. Air cooling system thermodynamic analysis and thermal balance control of dry cutting machine tool [J]. Journal of Mechanical Engineering,2019,55(5):204-211. [4] 王晓铭,李长河,张彦彬,等. 微量润滑赋能雾化与供给系统关键技术研究进展[J]. 表面技术,2022,51(9):1-14. WANG Xiaoming,LI Changhe,ZHANG Yanbin,et al. Research progress on key technology of enabled atomization and supply system of minimum quantity lubrication[J]. Surface Technology,2022,51(9):1-14. [5] CUI X,LI C H,ZHANG Y B,et al. Comparative assessment of force,temperature,and wheel wear in sustainable grinding aerospace alloy using biolubricant[J]. Frontiers of Mechanical Engineering,2023,18(1):3. [6] SAID Z,SUNDAR L S,TIWARI A K,et al. Recent advances on the fundamental physical phenomena behind stability,dynamic motion,thermophysical properties,heat transport,applications,and challenges of nanofluids[J]. Physics Reports-Review Section of Physics Letters,2022,946:1-94. [7] CHAN C H,TANG S W,MOHD N K,et al. Tribological behavior of biolubricant base stocks and additives[J]. Renewable & Sustainable Energy Reviews,2018,93:145-157. [8] ZHANG Y B,LI H N,LI C H,et al. Nano-enhanced biolubricant in sustainable manufacturing:From processability to mechanisms[J]. Friction,2022,10(6):803-841. [9] WICKRAMASINGHE K C,SASAHARA H,ABD RAHIM E,et al. Green metalworking fluids for sustainable machining applications:A review[J]. Journal of Cleaner Production,2020,257:120552. [10] CHETAN,GHOSH S,RAO PV. Application of sustainable techniques in metal cutting for enhanced machinability:A review[J]. Journal of Cleaner Production,2015,100:17-34. [11] DOGRA M,SHARMA V S,DUREJA J S,et al. Environment-friendly technological advancements to enhance the sustainability in surface grinding- A review[J]. Journal of Cleaner Production,2018,197:218-231. [12] GUPTA M K,KHAN A M,SONG Q H,et al. A review on conventional and advanced minimum quantity lubrication approaches on performance measures of grinding process[J]. International Journal of Advanced Manufacturing Technology,2021,117(3-4):729-750. [13] HE T,LIU N C,XIA H Z,et al. Progress and trend of minimum quantity lubrication (MQL):A comprehensive review[J]. Journal of Cleaner Production,2023,386:135809. [14] LIU M Z,LI C H,ZHANG Y B,et al. Cryogenic minimum quantity lubrication machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2021,16(4):649-697. [15] 袁松梅,韩文亮,朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报,2019,55(5):175-185. YUAN Songmei, HAN Wenliang, ZHU Guangyuan, et al. Recent progress on the efficiency increasing methods of minimum quantity lubrication technology in green cutting[J]. Journal of Mechanical Engineering,2019,55(5):175-185. [16] 杨简彰,王成勇,袁尧辉,等. 微量润滑复合增效技术及其应用研究进展[J]. 中国机械工程,2022,33(5):506-528. YANG Jianzhang, WANG Chengyong, YUAN Yaohui,et al. State-of-the art on MQL synergistic technologies and their applications[J]. China Mechanical Engineering,2022,33(5):506-528. [17] SHARMA AK,TIWARI AK,DIXIT AR. Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids:A comprehensive review[J]. Journal of Cleaner Production,2016,127:1-18. [18] NAJIHA MS,RAHMAN MM,YUSOFF AR. Flank wear characterization in aluminum alloy (6061 T6) with nanofluid minimum quantity lubrication environment using an uncoated carbide tool[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2015,137(6):061004. [19] MAO C,ZHANG J,HUANG Y,et al. Investigation on the effect of nanofluid parameters on MQL grinding[J]. Materials and Manufacturing Processes,2013,28(4):436-442. [20] DOWSON D. History of tribology[M]. New York:Longmans Green,1979. [21] YILDIRIM C V,KIVAK T,SARIKAYA M,et al. Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base superalloy waspaloy[J]. Arabian Journal for Science and Engineering,2017,42(11):4667-4681. [22] PADMINI R,KRISHNA P V,RAO G K M. Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel[J]. Tribology International,2016,94:490-501. [23] GUO SM,LI CH,ZHANG YB,et al. Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy[J]. Journal of Cleaner Production,2017,140:1060-1076. [24] GUO S M,LI C H,ZHANG Y B,et al. Analysis of volume ratio of castor/soybean oil mixture on minimum quantity lubrication grinding performance and microstructure evaluation by fractal dimension[J]. Industrial Crops and Products,2018,111:494-505. [25] TEVET O,VON-HUTH P,POPOVITZ-BIRO R,et al. Friction mechanism of individual multilayered nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(50):19901-19906. [26] FAN X Q,LI W,FU HM,et al. Probing the function of solid nanoparticle structure under boundary lubrication[J]. Acs Sustainable Chemistry & Engineering,2017,5(5):4223-4233. [27] MUSAVI S H,DAVOODI B,NIKNAM S A. Effects of reinforced nanoparticles with surfactant on surface quality and chip formation morphology in MQL-turning of superalloys[J]. Journal of Manufacturing Processes,2019,40:128-139. [28] KAO M J,LIN C R. Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron[J]. Journal of Alloys and Compounds,2009,483(1-2):456-459. [29] WANG XM,LI CH,ZHANG YB,et al. Vegetable oil-based nanofluid minimum quantity lubrication turning:Academic review and perspectives[J]. Journal of Manufacturing Processes,2020,59:76-97. [30] SAID Z,SAIDUR R,RAHIM NA. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid[J]. Journal of Cleaner Production,2016,133:518-530. [31] LEE P H,NAM J S,LI C,et al. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL)[J]. International Journal of Precision Engineering and Manufacturing,2012,13(3):331-338. [32] DUBEY V,SHARMA A K,PIMENOV D Y. Prediction of surface roughness using machine learning approach in MQL turning of AISI 304 steel by varying nanoparticle size in the cutting fluid[J]. Lubricants,2022,10(5):81. [33] KHAJEHZADEH M,MORADPOUR J,RAZFAR M R. Influence of nanolubricant particles' size on flank wear in hard turning[J]. Materials and Manufacturing Processes,2019,34(5):494-501. [34] LEE P H,KIM J W,LEE S W. Experimental characterization on eco-friendly micro-grinding process of titanium alloy using air flow assisted electrospray lubrication with nanofluid[J]. Journal of Cleaner Production,2018,201:452-462. [35] YUAN S M,HOU X B,WANG L,et al. Experimental Investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining[J]. Tribology Letters,2018,66(3):106. [36] TALIB N,SASAHARA H,RAHIM E A. Evaluation of modified jatropha-based oil with hexagonal boron nitride particle as a biolubricant in orthogonal cutting process[J]. International Journal of Advanced Manufacturing Technology,2017,92(1-4):371-391. [37] LI B K,LI C H,ZHANG Y B,et al. Effect of the physical properties of different vegetable oil-based nanofluids on MQLC grinding temperature of Ni-based alloy[J]. International Journal of Advanced Manufacturing Technology,2017,89(9-12):3459-3474. [38] ZHANG Y B,LI C H,JIA D Z,et al. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy[J]. Journal of Materials Processing Technology,2016,232:100-115. [39] SEN B,MIA M,GUPTA M K,et al. Influence of Al2O3 and palm oil-mixed nano-fluid on machining performances of Inconel-690:IF-THEN rules-based FIS model in eco-benign milling[J]. International Journal of Advanced Manufacturing Technology,2019,103(9-12):3389-3403. [40] DUAN Z J,YIN Q G,LI C H,et al. Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations[J]. International Journal of Advanced Manufacturing Technology,2020,107(3-4):1277-1296. [41] ROUSHAN A,RAO US,PATRA K,et al. Performance evaluation of tool coatings and nanofluid MQL on the micro-machinability of Ti-6Al-4V[J]. Journal of Manufacturing Processes,2022,73:595-610. [42] SHARMA AK,SINGH RK,DIXIT AR,et al. Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel[J]. Journal of Manufacturing Processes,2017,30:467-482. [43] JUNANKAR A A,YASHPAL Y,PUROHIT J K. Experimental investigation to study the effect of synthesized and characterized monotype and hybrid nanofluids in minimum quantity lubrication assisted turning of bearing steel[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2022,236(9):1794-1813. [44] THAKUR A,MANNA A,SAMIR S. Experimental investigation of nanofluids in minimum quantity lubrication during turning of EN-24 steel[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2020,234(5):712-729. [45] DUBEY V,SHARMA A K,VATS P,et al. Study of a multicriterion decision-making approach to the MQL turning of AISI 304 steel using hybrid nanocutting fluid[J]. Materials,2021,14(23):7207. [46] SINGH R K,SHARMA A K,DIXIT A R,et al. Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning[J]. Journal of Cleaner Production,2017,162:830-845. [47] SIRIN S,KIVAK T. Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy[J]. Journal of Manufacturing Processes,2021,70:163-176. [48] SAFIEI W,RAHMAN M M,YUSOFF A R,et al. Effects of SiO2-Al2O3-ZrO2 Tri-hybrid nanofluids on surface roughness and cutting temperature in end milling process of aluminum alloy 6061-T6 using uncoated and coated cutting inserts with minimal quantity lubricant method[J]. Arabian Journal for Science and Engineering,2021,46(8):7699-7718. [49] ZHANG X P,LI C H,ZHANG Y B,et al. Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Technology,2016,86(9-12):3427-3441. [50] ZHANG X P,LI C H,ZHANG Y B,et al. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2017,47:532-545. [51] MAO C,ZOU H F,ZHOU X,et al. Analysis of suspension stability for nanofluid applied in minimum quantity lubricant grinding[J]. International Journal of Advanced Manufacturing Technology,2014,71(9-12):2073-2081. [52] SHABGARD M,SEYEDZAVVAR M,ABBASI H. Investigation into features of graphite nanofluid synthesized using electro discharge process[J]. International Journal of Advanced Manufacturing Technology,2017,90(5-8):1203-1216. [53] BEHERA B C,CHETAN,SETTI D,et al. Spreadability studies of metal working fluids on tool surface and its impact on minimum amount cooling and lubrication turning[J]. Journal of Materials Processing Technology,2017,244:1-16. [54] MCNUTT J,HE Q. Development of biolubricants from vegetable oils via chemical modification[J]. Journal of Industrial and Engineering Chemistry,2016,36:1-12. [55] LI H G,ZHANG Y B,LI C H,et al. Extreme pressure and antiwear additives for lubricant:Academic insights and perspectives[J]. International Journal of Advanced Manufacturing Technology,2022,120(1-2):1-27. [56] DEVENDIRAN D K,AMIRTHAM V A. A review on preparation,characterization,properties and applications of nanofluids[J]. Renewable & Sustainable Energy Reviews,2016,60:21-40. [57] SMAISIM G F,MOHAMMED D B,ABDULHADI A M,et al. Nanofluids:Properties and applications[J]. Journal of Sol-Gel Science and Technology,2022,104(1):1-35. [58] AMIN A R,ALI A,ALI H M. Application of nanofluids for machining processes:A comprehensive review[J]. Nanomaterials,2022,12(23):4214. [59] LI FS,LI L,ZHONG G J,et al. Effects of ultrasonic time,size of aggregates and temperature on the stability and viscosity of Cu-ethylene glycol (EG) nanofluids[J]. International Journal of Heat and Mass Transfer,2019,129:278-286. [60] MONDRAGON R,JULIA J E,BARBA A,et al. Characterization of silica-water nanofluids dispersed with an ultrasound probe:A study of their physical properties and stability[J]. Powder Technology,2012,224:138-146. [61] GHADIMI A,SAIDUR R,METSELAAR H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass Transfer,2011,54(17-18):4051-4068. [62] 伍婷婷,刘建忠,陈冰虹,等. 纳米流体燃料稳定性及金属颗粒改性方法研究进展[J]. 推进技术,2020,41(3):481-492. WU Tingting,LIU Jianzhong,CHEN Binghong,et al. Research progress on nanofluid fuels stability and metal particle modification methods[J]. Journal of Propulsion Technology,2020,41(3):481-492. [63] YU F,CHEN Y Y,LIANG X B,et al. Dispersion stability of thermal nanofluids[J]. Progress in Natural Science-Materials International,2017,27(5):531-542. [64] BABAR H,ALI H M. Towards hybrid nanofluids:Preparation,thermophysical properties,applications,and challenges[J]. Journal of Molecular Liquids,2019,281:598-633. [65] CABANETTES F,FAVERJON P,SOVA A,et al. MQL machining:from mist generation to tribological behavior of different oils[J]. International Journal of Advanced Manufacturing Technology,2017,90(1-4):1119-1130. [66] 姚永权. MQL电控可闭环精密可调微量泵:中国,CN211176254U [P]. 2020-08-04. YAO Yongquan. MQL electric control closed-loop precision adjustable micro pump:China,CN211176254U [P]. 2020-08-04. [67] 袁松梅,侯学博. 一种微量润滑系统:中国,CN206802727U [P]. 2017-12-26. YUAN Songmei,HOU Xuebo. Lubricating system with trace amount :China,CN206802727U [P]. 2017-12-26. [68] 张彦彬,李长河,杨敏,等. 一种支持不同润滑工况的连续供给精密微量润滑泵:中国,CN207539607U [P]. 2018-06-26. ZHANG Yanbin,LI Changhe,YANG Min,et al. Continuous feeding precise micro-lubricating pump supporting different lubricating working conditions:China,CN207539607U [P]. 2018-06-26. [69] HUANG WT,LIU WS,WU DH. Investigations into lubrication in grinding processes using MWCNTs nanofluids with ultrasonic-assisted dispersion[J]. Journal of Cleaner Production,2016,137:1553-1559. [70] JIA DZ,LI CH,LIU JH,et al. Prediction model of volume average diameter and analysis of atomization characteristics in electrostatic atomization minimum quantity lubrication[J]. Friction,2023,11:2107-2131. [71] HADAD M,BEIGI M. A novel approach to improve environmentally friendly machining processes using ultrasonic nozzle-minimum quantity lubrication system[J]. International Journal of Advanced Manufacturing Technology,2021,114(3-4):741-756. [72] 孔晓瑶,袁松梅,朱光远,等. 微量润滑系统参数对雾化特性的影响[J]. 中国机械工程,2021,32(5):579-586. KONG Xiaoyao,YUAN Songmei,ZHU Guangyuan,et al. Influences of MQL system parameters on atomization characteristics[J]. China Mechanical Engineering,2021,32(5):579-586. [73] SU Y,GONG L,LI B,et al. Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning[J]. International Journal of Advanced Manufacturing Technology,2016,83(9-12):2083-2089. [74] 贾东洲,李长河,张彦彬,等. 钛合金生物润滑剂电牵引磨削性能及表面形貌评价[J]. 机械工程学报,2022,58(5):198-211. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant [J]. Journal of Mechanical Engineering,2022,58(5):198-211. [75] 沈玉杰,裴宏杰,王贵成. MQL外圆车削数值模拟及流场分析[J]. 机械设计与制造,2012(8):208-210. SHEN Yujie,PEI Hongjie,WANG Guicheng. The numerical simulation and flow field analysis of MQL cylindrical turning[J]. Machinery Design & Manufacture,2012(8):208-210. [76] SAI SS,MANOJKUMAR K,GHOSH A. Assessment of spray quality from an external mix nozzle and its impact on SQL grinding performance[J]. International Journal of Machine Tools & Manufacture,2015,89:132-141. [77] PARK KH,OLORTEGUI-YUME J,YOON MC,et al. A study on droplets and their distribution for minimum quantity lubrication (MQL)[J]. International Journal of Machine Tools & Manufacture,2010,50(9):824-833. [78] BALAN A S S,KULLARWAR T,VIJAYARAGHAVAN L,et al. Computational fluid dynamics analysis of MQL spray parameters and its influence on superalloy grinding[J]. Machining Science and Technology,2017,21(4):603-616. [79] 贾东洲,李长河,张彦彬,等. 纳米粒子射流微量润滑磨削雾化喷嘴下游流场数值模拟与实验研究[J]. 组合机床与自动化加工技术,2015(9):5-9. JIA Dongzhou,LI Changhe,ZHANG Yanbin,et al. Numerical simulation and experimental research about downstream flow field of atomizing nozzle in nanoparticle jet MQL grinding[J]. Modular Machine Tool & Automatic Manufacturing Technique,2015(9):5-9. [80] ABD RAHIM E,DORAIRAJU H. Evaluation of mist flow characteristic and performance in minimum quantity lubrication (MQL) machining[J]. Measurement,2018,123:213-225. [81] MAO C,ZHOU X,YIN L R,et al. Investigation of the flow field for a double-outlet nozzle during minimum quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Technology,2016,85(1-4):291-298. [82] OBIKAWA T,ASANO Y,KAMATA Y. Computer fluid dynamics analysis for efficient spraying of oil mist in finish-turning of Inconel 718[J]. International Journal of Machine Tools & Manufacture,2009,49(12-13):971-978. [83] LV T,XU X F,YU A B,et al. Oil mist concentration and machining characteristics of SiO2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling[J]. Journal of Materials Processing Technology,2021,290:116964. [84] 杨敏,李长河,李润泽,等. 一种神经外科超声聚焦辅助三级雾化冷却与术后创口成膜装置:中国,CN107789030A [P]. 2018-03-13. YANG Min,LI Changhe,LI Runze,et al. Neurosurgical ultrasonic focusing assisted three-stage atomization cooling and postoperative wound film forming device:China,CN107789030A [P]. 2018-03-13. [85] 曹洋,李华,任坤,等. 球面聚焦超声辅助汽雾冷却系统换热特性研究[J]. 中国机械工程,2018,29(11):1279-1284. CAO Yang,LI Hua,REN Kun,et al. Research on heat transfer performances of spherical focused ultrasound assisted ultrasonic atomizing cooling system[J]. China Mechanical Engineering,2018,29(11):1279-1284. [86] 陈小静,唐军,肖淼鑫,等. 低温微量超声雾化声学系统[J]. 应用声学,2023,42(4):1-11. CHEN Xiaojing,TANG Jun,XIAO Miaoxin,et al. Cryogenic minimum quantity ultrasonic atomization acoustic system[J]. Journal of Applied Acoustics,2023,42(4):1-11. [87] MADARKAR R,AGARWAL S,ATTAR P,et al. Application of ultrasonic vibration assisted MQL in grinding of Ti-6Al-4V[J]. Materials and Manufacturing Processes,2018,33(13):1445-1452. [88] JUN M B G,JOSHI S S,DEVOR R E,et al. An experimental evaluation of an atomization-based cutting fluid application system for micromachining[J]. Journal of Manufacturing Science and Engineering-Transactions of the Asme,2008,130(3):031118. [89] LEFEBURE A,SHIM D. Ultrasonic atomization of highly viscous biodegradable oils for MQL applications[J]. Journal of Mechanical Science and Technology,2021,35(12):5503-5516. [90] BURTON G,GOO C S,ZHANG Y Q,et al. Use of vegetable oil in water emulsion achieved through ultrasonic atomization as cutting fluids in micro-milling[J]. Journal of Manufacturing Processes,2014,16(3):405-413. [91] NATH C,KAPOOR S G,SRIVASTAVA A K,et al. Study of droplet spray behavior of an atomization-based cutting fluid spray system for machining titanium alloys[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2014,136(2):021004. [92] HOYNE A C,NATH C,KAPOOR S G. Characterization of fluid film produced by an atomization-based cutting fluid spray system during machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME,2013,135(5):051006. [93] ZHANG Y,YUAN S M,WANG L Z. Investigation of capillary wave,cavitation and droplet diameter distribution during ultrasonic atomization[J]. Experimental Thermal and Fluid Science,2021,120:110219. [94] YUAN S M,ZHANG Y,GAO Y. Faraday wave instability characteristics of a single droplet in ultrasonic atomization and the sub-droplet generation mechanism[J]. Experimental Thermal and Fluid Science,2022,134:110618. [95] ZHANG Y,YUAN S M. Phase,pressure and velocity evolution and atomization characteristics of multiple Faraday waves in ultrasonic atomization:experiments and simulations[J]. International Journal of Multiphase Flow,2022,156:104223. [96] ZHANG Y,YUAN S M,GAO Y. Spatial distribution and transient evolution of sub-droplet velocity and size in ultrasonic atomization[J]. Experimental Thermal and Fluid Science,2023,140:110761. [97] HUANG W T,LIU W S,TSAI J T,et al. Multiple quality characteristics of nanofluid/ultrasonic atomization minimum quality lubrication for grinding hardened mold steel[J]. IEEE Transactions on Automation Science and Engineering,2018,15(3):1065-1077. [98] HUANG W T,TSAI J T,HSU C A F,et al. Multiple performance characteristics in the application of Taguchi fuzzy method in nanofluid/ultrasonic atomization minimum quantity lubrication for grinding Inconel 718 alloys[J]. International Journal of Fuzzy Systems,2022,24(1):294-309. [99] HUANG W T,CHOU F I,TSAI J T,et al. Optimal design of parameters for the nanofluid/ultrasonic atomization minimal quantity lubrication in a micromilling process[J]. IEEE Transactions on Industrial Informatics,2020,16(8):5202-5212. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[3] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[4] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[5] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[6] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[7] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[8] | 崔歆, 李长河, 张彦彬, 杨敏, 周宗明, 刘波, 王春锦. 磁力牵引纳米润滑剂微量润滑磨削力模型与验证[J]. 机械工程学报, 2024, 60(9): 323-337. |
[9] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[10] | 关集俱, 祝正兵, 徐正亚, 栾志强, 许雪峰. CNTs@T321微囊制备的纳米流体与砂轮磨削时的双重润滑增效机制[J]. 机械工程学报, 2024, 60(9): 351-363. |
[11] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[12] | 刘安南, 刘战强, 蔡士祥, 赵金富, 王兵. 切削加工车削刀具断屑装置及技术研究综述[J]. 机械工程学报, 2024, 60(7): 334-349. |
[13] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[14] | 杨树财, 韩佩, 佟欣, 刘献礼, 张晓辉. 刀具介观几何特征成形技术及其作用研究[J]. 机械工程学报, 2024, 60(5): 317-351. |
[15] | 贾康, 王浩, 任东旭, 洪军. 一种圆柱型车齿刀的安装模型及无干涉设计方法[J]. 机械工程学报, 2024, 60(5): 352-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||