[1] NING Xianwen,ZHANG Jiaxun. Spacecraft thermal control technology based on variable frequency pump[J]. Chinese Space Science and Technology,2011,31(2):43-52. [2] YANG Wei,LIN Yangting. Newlunar samples returned by Chang'e-5:Opportunities for new discoveries and international collaboration[J]. The Innovation,2020,2(1):100070. [3] 李阳,郭壮. 嫦娥五号返回样品的科学研究前景[J]. 矿物岩石地球化学通报,2021,40(1):245-246. LI Yang,GUO Zhuang. Scientific research prospects of the returned samples of Chang'e 5[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2021,40(1):245-246. [4] MENG Qingyu,WANG Dong,WANG Xiaodong,et al. High-resolution imaging camera (HiRIC) on China' s first mars exploration Tianwen-1 mission[J]. Space Science Reviews,2021, 217(3):41-45. [5] TIAN Ru,HANG Chunjing,TIAN Yanhong,et al. Brittle fracture of Sn-37Pb solder joints induced by enhanced intermetallic compound growth under extreme temperature changes[J]. Journal of Materials Processing Technology,2019,268(5):1-9. [6] TIAN Ru,HANG Chunjing,TIAN Yanhong,et al. Brittle fracture induced by phase transformation of Ni-Cu-Sn intermetallic compounds in Sn-3Ag-0.5Cu/Ni solder joints under extreme temperature environment[J]. Journal of Alloys and Compounds,2018,777(64):463-471. [7] BISG A,BGNT A. A new type of ground-based simulator of radiation field inside a spacecraft in deep space-science direct[J]. Life Sciences in Space Research,2021,30(9):66-71. [8] TSURUTANI B,BRINZA D E,Henry M D,et al. Plasma-based detector of outer-space dust particles[R]. NASA Technical Reports Server,2006. [9] JI Xiaoliang,AN Rong,MA Fei,et al. Unique buoyancy-force-based kinetics determination of beta to alpha phase transformation in bulk tin plates[J]. Materials & Design,2020,190(15):108550. [10] TIAN Ruyu,HANG Chunjing,TIAN Yanhong,et al. Interfacial intermetallic compound growth in Sn-3Ag-0.5Cu/Cu solder joints induced by stress gradient at cryogenic temperatures[J]. Journal of Alloys and Compounds,2019,800(45):180-190. [11] 张玉花,王献忠,褚英志,等. 我国首次自主火星探测任务中环绕器的研制与实践[J]. 上海航天,2020,37(5):1-9. ZHANG Yuhua,WANG Xianzhong,CHU Yingzhi,et al. Development and practice of the orbiter in China's first mars exploration mission[J]. Aerospace Shanghai,2020,37(5):1-9. [12] 张峻,孙晓峰,张彬彬,等. 极限温度环境对电子材料及元器件性能的影响[J]. 航天器环境工程,2018,35(6):547-554. ZHANG Jun,SUN Xiaofeng,ZHANG Binbin,et al. Effects of extreme temperature on the performance of technology[J]. Spacecraft Environment Engineering,2018,35(6):547-554. [13] RAHMAN M M,AHMED S R,KAISER M S. On the investigation of reuse potential of SnPb-solder affected copper subjected to work-hardening and thermal ageing[J]. Materials Characterization,2021,172(3):110878. [14] LIU Yang,REN Baiqiao,ZHOU Ming,et al. Effect of porous Cu addition on the microstructure and mechanical properties of SnBi-xAg solder joints[J]. Applied Physics A,2020,126(9):1-10. [15] JIANG Nan,ZHANG Liang,XIONG Mingyue,et al. Research progress on lead-free soldering technology for electronic packaging[J]. Materials Reports,2019,28(4):98-102. [16] 徐恺恺,张亮,孙磊,等. Sn-Zn钎料的研究进展[J]. 机械工程材料,2020,44(6):1-5. XU Kaikai,ZHANG Liang,SUN Lei,et al. Research progress on Sn-Zn solder[J]. Journal of Electronic Materials,2020,44(6):1-5. [17] 姜楠,张亮,熊明月,等. 电子封装无铅软钎焊技术研究进展[J]. 材料导报,2019,33(23):3862-3875. JIANG Nan,ZHANG Liang,XIONG Mingyue,et al. Research progress on lead-free soldering technology for electronic packaging[J]. Materials Reports,2019,33(23):3862-3875. [18] ZHAO Ning,HUANG Mingliang. In situ observation of electromigration-induced anomalous precipitation of Ag3Sn phase in Ag-containing solder joints[J]. Journal of Electronic Materials,2021,50(4):2111-2116. [19] JIAN Peng,LIU Huashan,FU Liming. Multi-principal-element products enhancing Au-Sn-bonded joints[J]. Journal of Alloys and Compounds,2021,852(25):157015. [20] LIU Zheng,LI Yang,LU Kaijian,et al. IMC growth and mechanical properties of Cu/In-48Sn/Cu solder joints[J]. Journal of Electronic Materials,2021,50(6):3326-3333. [21] AHAT S,LIGUANG D U,SHENG M. Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints[J]. Journal of Electronic Materials,2000,29(9):1105-1109. [22] HU Xiaowu,XU Han,CHEN Wenjing,et al. Effects of ultrasonic treatment on mechanical properties and microstructure evolution of the Cu/SAC305 solder joints[J]. Journal of Manufacturing Processes,2021,64(16):648-654. [23] HO C,YANG S,LEE P,et al. IMC microstructure modification and mechanical reinforcement of Sn-Ag-Cu/Cu microelectronic joints through an advanced surface finish technique[J]. Journal of Materials Research and Technology,2021,11(45):1895-1910. [24] 王传勇,张晓娇,周瑞昌,等. 电子组装用无铅钎料的研究现状及发展趋势[J]. 科技风,2019,6(16):165. WANG Chuanyong,ZHANG Xiaojiao,ZHOU Ruichang,et al. Research status and development trend of lead-free solder for electronic assembly[J]. Technology Wind,2019,6(16):165. [25] SU Sinan,AKKARA F,THAPER R,et al. A state-of-the-art review of fatigue life prediction models for solder joint[J]. Journal of Electronic Packaging,2019,141(4):040802. [26] LAU J. State of the art of lead-free solder Joint reliability[J]. Journal of Electronic Packaging,2020,143(2):020803. [27] 姚宗湘. 电子封装无铅微焊点的蠕变行为及镀层锡须生长机制研究[D]. 重庆:重庆大学,2019. YAO Zongxiang. The creep behaviors of lead-free micro-solder joints and the growth mechanism of tin whisker on coatings in electronic packaging[D]. Chongqing:Chongqing University,2019. [28] NIU Xiaoyan,SHEN Linlin,CHEN Cong,et al. An arrhenius-type constitutive model to predict the deformation behavior of Sn0.3Ag0.7Cu under different temperature[J]. Journal of Materials Science Materials in Electronics,2019,30(15):14611-14620. [29] CHENG Z N, WANG G Z,CHEN L,et al. Viscoplastic anand model for solder alloys and its application[J]. Soldering & Surface Mount Technology,2000,12(2):31-6. [30] PEI M,QU J. Constitutive modeling of lead-free solders[C]//Advances in Electronic Packaging,2005,6(2):1307-1311. [31] KALIDINDI S R. Polycrystal plasticity:Constitutive modeling and deformation processing[D]. Cambridge:Massachusetts Institute of Technology,1992. [32] 王旭艳,徐仁春,刘刚. Anand本构方程在焊点可靠性研究中的应用[J]. 电焊机,2012,42(12):66-69. WANG Xuyan,XU Renchun,LIU Gang. Application of anand constitutive equations in solder joint reliability[J]. Electric Welding Machine,2012,42(12):66-69. [33] 赵新新. 典型封装器件热应力分析及焊点疲劳寿命预测[D]. 西安:西安电子科技大学,2015. ZHAO Xinxin. Thermal stress analysis and solder joints fatigue life prediction of typical package[D]. Xi'an:Xidian University,2015. [34] YANG Ping,CAI Junshen. Finite element analysis on stress/strain in CBGA solder joint with different substrates under thermal cycle[J]. International Journal of Manufacturing Technology and Management,2009,18(3):333-339. [35] 王国忠,程兆年. SnPb钎料合金的粘塑性Anand本构方程[J]. 应用力学学报,2015,3(1):66-69. WANG Guozhong,CHENG Zhaonian. Viscoplastic Anand constitutive equations of SnPb solder alloy[J]. Chinese Journal of Applied Mechanics,2015,3(1):66-69. [36] CHANG Ruiwu,MCCLUSKEY F P. Constitutive relations of indium in extreme temperature electronic packaging based on Anand model[J]. Journal of Electronic Materials,2009,38(9):1855-1859. [37] YU Shouwen,FENG Xiaoqi. A micromechanics-based damage model for microcrack-weakened brittle solids[J]. Mechanics of Materials,1995,20(1):59-67. [38] JI Xiaoliang,AN Qi,AN Rong,et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn-Pb eutectic alloy at cryogenic temperatures[J]. Materials Science and Engineering:A,2021,819(5):141523. [39] 彭勃. 高功率半导体激光器互连界面可靠性研究[D]. 北京:中国科学院大学,2018. PENG Bo. Reliability of die bonding layers in high power diode laser packages[D]. Beijing:University of Chinese Academy of Sciences,2018. [40] LONG Xu,CHEN Zubin,WANG Wenjie,et al. Parameterized anand constitutive model under a wide range of temperature and strain rate:Experimental and theoretical studies[J]. Journal of Materials Science,2020,55(24):10811-10823. [41] CHEN Gang,HU Tao,XIE Mingwei,et al. A new unified constitutive model for SAC305 solder under thermo-mechanical loading[J]. Mechanics of Materials,2019,138:1-11. [42] LAU J H,PAN S. Creep behaviors of flip chip on board with 96.5Sn-3.5Ag and 100 In lead-free solder joints[C]//Proceedings of IMAPS Microelectronics Conference,2000,4339:866-873. [43] 姜楠,张亮,刘志权,等. FCBGA器件SnAgCu焊点的热冲击可靠性分析[J]. 焊接学报,2019,40(9):39-42. JIANG Nan,ZHANG Liang,LIU Zhiquan,et al. Thermal shock reliability analysis of Sn-Ag-Cu solder joints of FCBGA devices[J]. Transactions of the China Welding Institution,2019,40(9):39-42. [44] HO H L,JAE B K. Realistic creep characterization for Sn3.0Ag0.5Cu solder joints in flip chip BGA package[J]. Journal of Electronic Materials,2019,48(10):6857-6865. [45] CAI Chongyang,XU Jiefeng,WANG Huayan. Reliability of homogeneous Sn-Bi and hybrid Sn-Bi/SAC BGAs[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC). IEEE,2020. [46] CHIU T C,ZENG K,STIERMAN R,et al. Effect of thermal aging on board level drop reliability for Pb-free BGA packages[C]//Electronic Components & Technology Conference. IEEE,2004,2:1256-1262. [47] GONZALEZ M,VANDEVELDE B,BEYNE E. Thermo-mechanical analysis of a chip scale package (CSP) using lead free and lead containing solder materials[C]//European Microelectronics and Packaging Symposium,2004:247-252. [48] SUHIR E,GHAFFARIAN R. Electron device subjected to temperature cycling:Predicted time to failure[J]. Journal of Electronic Materials,2018,48(2):778-779. [49] HUANG X,WANG Z,YU Y. Thermomechanical properties and fatigue life evaluation of Sn-Ag-Cu solder joints for microelectronic power module application[J]. Journal of Materials Research and Technology,2020,9(3):5533-5541. [50] 马飞. 纯锡及锡基钎料合金低温相变行为的分析与检测[D]. 哈尔滨:哈尔滨工业大学,2019. MA Fei. Analysis and detection of low temperature phase transformation behavior of pure Sn and Sn-based solder alloys[D]. Harbin:Harbin Institute of Technology,2019. [51] SKWAREK A,BALZS I,TAMS H,et al. Effect of recrystallization on β to α-Sn allotropic transition in 99.3Sn-0.7Cu wt.% solder alloy inoculated with In-Sb[J]. Materials,2020,13(4):968-979. [52] AN Qi,WANG Chunqing,ZHAO Xiangxi,et al. The mechanism study of low-temperature brittle fracture of bulk Sn-based solder[C]//2017 18th International Conference on Electronic Packaging Technology (ICEPT). IEEE,2017,39(10):1233-1237. [53] 赵鑫. Sn63Pb37、Sn3.0Ag0.5Cu钎料及其焊点的低温可靠性研究[D]. 哈尔滨:哈尔滨工业大学,2014. ZHAO Xin. Study on reliability of Sn63pb37\Sn3.0ag0.5cu solders and solder joints under low temperature[D]. Harbin:Harbin Institute of Technology,2014. [54] TIAN Ruyu,TIAN Yanhong,WANG Chenxi,et al. Mechanical properties and fracture mechanisms of Sn-3.0Ag-0.5Cu solder alloys and joints at cryogenic temperatures[J]. Materials Science and Engineering A,2017,684(27):697-705. [55] 肖波. 极低温下锡铅银钎料及焊点力学行为与组织演变研究[D]. 哈尔滨:哈尔滨工业大学,2018. XIAO Bo. Investigation on mechanics behavior and microstructure evolution of tin-lead-silver solders and joints at extremely low temperature[D]. Harbin:Harbin Institute of Technology,2018. [56] 都雪. 极低温Sn基焊点性能及寿命预测[D]. 哈尔滨:哈尔滨工业大学,2015. DU Xue. Sn-based solder joints property and life prediction in extremely low temperature[D]. Harbin:Harbin Institute of Technology,2015. [57] DAWOOD M,ELADLY S A,EL-TAHER A M. Viscoplastic creep caracterization of novel Sn-0.7Cu-0.2Ni-xAl lead-free solders for electronics applications[J]. Arab Journal of Nuclear Sciences and Applications,2021,54(1):85-96. [58] ZARHANESH N,SAMEEZADEH M,VASEGHI M. A novel thermal-gradient creep test to evaluate the creep behavior of Sn-Pb eutectic alloy[J]. Materials at High Temperatures,2021,38(3):139-146. [59] HV A,SHS A,MRA A,et al. Numerical and experimental analysis of creep deformation and stress-relaxation in Sn-5Sb lead-free alloy[J]. Engineering Failure Analysis,2020,120(12):105075. [60] FK A,MZ B,GK B. Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes[J]. Materials Science and Engineering:A,2020,797(28):140203. |