[1] ZHANG J B. Study on porosity defects of high strength ZL205A castings[J]. Manufacturing Technology Research, 2007, 1:4-8. [2] STARKE E, STALEY J. Application of modern aluminum alloys to aircraft[J]. Progress in Aerospace Sciences, 1996, 32(2):131-172. [3] 张钰. 铝合金在航天航空中的应用[J]. 铝加工, 2009(3):50-53. ZHANG Yu. Application of aluminum alloy to aerospace industry[J]. Aluminium Fabrication, 2009(3):50-53. [4] 李劲风,郑子樵,陈永来,等. 铝锂合金及其在航天工业上的应用[J]. 宇航材料工艺, 2012(1):13-19. LI Jinfeng, ZHENG Ziqiao, CHEN Yonglai, et al. Al-Li alloys and their application in aerospace industry[J]. Aerospace Materials & Technology, 2012(1):13-19. [5] BILSTEIN R E. National Aeronautics and Space Administration[M]. Washington, D.C.:NASA, 1996. [6] LIU Chi, LI Qingchun, ZENG Songyan. Numerical simulation of quasi-solid stress, strain and hot cracking during solidification for Al-Cu alloy[J]. Chinese Journal of Mechanical Engineering, 1990, 3(1):36-42. [7] 黄树海,赵祖德,肖远伦,等. 冷热循环对铝合金锥形件淬火残余应力和加工变形的影响[J]. 机械工程学报, 2010, 46(14):73-78. HAUNG Shuhai, ZHAO Zude, XIAO Yuanlun, et al. Influence of thermal-cooling cycle on both quenching-induced residual stress and machining-induced distortion of aluminum cone-shaped part[J]. Journal of Mechanical Engineering, 2010, 46(14):73-78. [8] NICHENKO S, STAICU D. Thermal conductivity of porous UO 2:Molecular dynamics study[J]. Journal of Nuclear Materials, 2014, 454(1):315-322. [9] WARKE V S. Predicting the response of powder metallurgy steel components to heat treatment[D]. Worcester Polytechnic Institute, 2008. [10] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15. [11] TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions[J]. International Journal of Fracture, 1981, 17(4):389-407. [12] 沈月,何国球,田丹丹,等. 二次枝晶臂间距对A319铝合金拉伸及疲劳性能的影响[J]. 材料研究学报, 2014, 28(8):587-593. SHEN Yue, HE Guoqiu, TIAN Dandan, et al. Effect of secondary dendrite arm spacing on tensile property and fatigue behavior of A319 aluminum alloy[J]. Chinese Journal of Materials Research, 2014, 28(8):587-593. [13] 潘杰花,邹勇志,曾建民. 二次枝晶臂间距对A357合金时效动力学的影响[J]. 汽车工程, 2009, 31(5):435-439. PAN Jiehua, ZOU Yongzhi, ZENG Jianmin. The influences of SDAS on the aging kinetics of A357 alloy[J]. Automotive Engineering, 2009, 31(5):435-439. [14] 李浩. Cu、RE对Al-Cu-Mn铸造铝合金微观组织及力学性能的影响[D]. 郑州:郑州大学, 2014. LI Hao. Effects of Cu and Re on the microstructure and mechanical properities of al-cu-mn casting alloy[D]. Zhengzhou:Zhengzhou University, 2014. [15] WANG Wengaung, WANG Gang, GUO Guannan, et al. Competitive relationship between thermal effect and grain boundary precipitates on the ductility of an as-quenched Al-Cu-Mn alloy[J]. International Journal of Damage Mechanics, 2016:1056789516683540. [16] 彭一波, 王罡, 潘尚峰, 等. 考虑动态回复过程的6005A铝合金动态力学模型[J]. 机械工程学报, 2014, 50(10):32-39. PENG Yibo, WANG Gang, PAN Shangfeng, et al. 6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering, 2014, 50(10):32-39. [17] ZHU J D, COCKCROFT S L, MAIJER D M. Modeling of microporosity formation in A356 aluminum alloy casting[J]. Metallurgical and Materials Transactions A, 2006, 37(3):1075-1085. [18] LU Yao. Experimental investigation and numerical modeling of microporosity formation in aluminum alloy A356[D]. University of British Columbia, 2011. [19] 贤福超,郭凡,肖文丰. ZL205A合金元素偏析行为[J]. 铸造, 2014, 63(10):995-998. XIAN Fuchao, GUO Fan, XIAO Wenfeng. Study on elements segregation behavior of ZL205A alloy[J]. Foundry, 2014, 63(10):995-998. [20] 马福民,曲银辉,王涛,等. ZL205A铝合金筒类铸件铸造工艺研究[J]. 铸造, 2014, 63(9):938-941. MA Fumin, QU Yinhui, WANG Tao, et al. Study on casting process for ZL205A sleeve type castings[J]. Foundry, 2014, 63(9):938-941. [21] 王狂飞,许广涛,周志杰,等. 铸造方法对ZL205A合金砂型铸造组织的影响[J]. 特种铸造及有色合金, 2015(6):629-632. WANG Kuangfei, XU Guangtao, ZHOU Zhijie, et al. Effect of sand mold casting method on microstrusture of ZL205A alloy[J]. Special-cast and Non-ferrous Alloys, 2015(6):629-632. [22] NADELLA R, ESKIN D G, DU Quan, et al. Macrosegregation in direct-chill casting of aluminium alloys[J]. Progress in Materials Science, 2008, 53(3):421-480. [23] ROY M J, MAIJER D M, DANCOINE L. Constitutive behavior of as-cast A356[J]. Materials Science and Engineering:A, 2012, 548:195-205. [24] AFRIN N, CHEN D L, CAO Xinjin, et al. Strain hardening behavior of a friction stir welded magnesium alloy[J]. Scripta Materialia, 2007, 57(11):1004-1007. [25] TAHREEN N, CHEN D L, NOURI M, et al. Effects of aluminum content and strain rate on strain hardening behavior of cast magnesium alloys during compression[J]. Materials Science and Engineering:A, 2014, 594:235-245. [26] WANG Wenguang, WANG Gang, HU Yisen, et al. Temperature-dependent constitutive behavior with consideration of microstructure evolution for as-quenched Al-Cu-Mn alloy[J]. Materials Science and Engineering:A, 2016, 678:85-92. [27] MI Guofa, WANG Kuangfei, GONG Haijun, et al. Microstructure and properties of ZL205 alloy[J]. China Foundry, 2008, 5(1):24-27. [28] ZHANG Ming, ZHANG Weiwen, ZHAO Haidong, et al. Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3):496-501. [29] TIRYAKIOĞLU M, SHUEY R T. Quench sensitivity of 2219-T87 aluminum alloy plate[J]. Materials Science and Engineering:A, 2010, 527(18):5033-5037. [30] ROBINSON J S, CUDD R L, TANNER D A, et al. Quench sensitivity and tensile property inhomogeneity in 7010 forgings[J]. Journal of Materials Processing Technology, 2001, 119(1):261-267. [31] KLOBES B, STAAB T E M, HAAKS M, et al. The role of quenched-in vacancies for the decomposition of aluminium alloys[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2008, 2(5):224-226. [32] HU Yisen, WANG Gang, WANG Wenguang, et al. Light Metals 2017[M]. Springer, 2017. [33] FLYNN R J, ROBINSON J S. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy[J]. Journal of Materials Processing Technology, 2004, 153:674-680. [34] HU Yisen, WANG Gang, WANG Wenguang, et al. Effect of precipitation during quenching on the prediction of the mechanical properties of Al-5%Cu alloy after T6 treatment[J]. Metallurgical and Materials Transactions A, 2017, 48:5667-5677. [35] SOFYAN B T, RAVIPRASAD K, RINGER S P. Effects of microalloying with Cd and Ag on the precipitation process of Al-4Cu-0.3 Mg (wt%) alloy at 200℃[J]. Micron, 2001, 32(8):851-856. [36] RINGER S P, HONO K, SAKURAI T. The effect of trace additions of sn on precipitation in Al-Cu alloys:An atom probe field ion microscopy study[J]. Metallurgical and Materials Transactions A, 1995, 26(9):2207-2217. |