• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (20): 94-106.doi: 10.3901/JME.2019.20.094

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于知识深度置信网络的加工粗糙度预测

刘国梁, 余建波   

  1. 同济大学机械与能源工程学院 上海 201804
  • 收稿日期:2019-01-05 修回日期:2019-06-19 出版日期:2019-10-20 发布日期:2020-01-07
  • 通讯作者: 余建波(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为机器学习、深度学习、智能制造。E-mail:jbyu@tongji.edu.cn
  • 作者简介:刘国梁,男,1996年出生。主要研究方向为机器学习、智能制造。E-mail:guoliangliutt@163.com
  • 基金资助:
    国家自然科学基金(51375290,71777173)、中央高校基本科研业务和上海科委创新科技行动计划(17511109204)资助项目。

Machining Roughness Prediction Based on Knowledge-based Deep Belief Network

LIU Guoliang, YU Jianbo   

  1. School of Mechanical Engineering, Tongji University, Shanghai 201804
  • Received:2019-01-05 Revised:2019-06-19 Online:2019-10-20 Published:2020-01-07

摘要: 深度神经网络是一种具有复杂结构和多个非线性处理单元的模型,目前也已逐步被应用在工业生产过程中。但由于神经网络不可解释,不可控制的"黑箱"问题,以及海量的数据需求问题,使得深度学习在工业领域的应用仍有巨大的障碍。提出一种新的深度神经网络模型:知识深度置信网络(Knowledge-based deep belief network,KBDBN)。这种逻辑符号语言与深度神经网络的结合,不仅使得模型具有良好的模式识别性能,还可自适应地确定网络模型并具有可解释和可视化特性。进一步提出基于KBDBN的工件表面粗糙度加工过程的预测模型,实现了精确预测且有效地提取了制造过程的关键知识。试验结果证明:相较于传统机器学习器,KBDBN的网络性能更加优越,具有可解释性,可应用性更强。创新性的将符号规则与深度学习相结合并建立加工粗糙度预测模型,可以在精准预测的前提下提取工艺知识,指导加工工艺优化。

关键词: 表面粗糙度, 深度学习, 深度置信网络, 知识发现, 模式识别

Abstract: Deep neural network (DNN) is a complex structure and multiple nonlinear processing unit models, and has been gradually applied in industrial production processes. Due to the unexplained of "black box" problem, and the huge data demand problem, however, there are still huge obstacles to the application of DNNs in industrial fields. A new DNN model, knowledge-based deep belief network (KBDBN), is proposed. The combination of this logical symbol language and deep neural network not only makes the model have good pattern recognition performance, but also adaptively determines the network model and has interpretable and visual characteristics. Furthermore, the prediction model of workpiece surface roughness processing based on KBDBN is proposed, which realizes accurate prediction and effectively extracts the key knowledge of the manufacturing process. Experimental results show that compared with the traditional machine learner, KBDBN has better network performance, model interpretability and more applicability. Combines symbolic rules with deep learning and establishes a processing roughness prediction model, which can extract process knowledge and guide process optimization under the premise of accurate prediction.

Key words: surface roughness, deep learning, deep belief network, knowledge discovery, pattern recognition

中图分类号: