[1] TSAI Y H,CHEN J C,LOU S J. An in-process surface recognition system based on neural networks in end milling cutting operations[J]. International Journal of Machine Tools & Manufacture,1999,39(4):583-605. [2] LELA B,BAJIC D,JOZIC S. Regression analysis,support vector machines,and Bayesian neural network approaches to modeling surface roughness in face milling[J]. International Journal of Advanced Manufacturing Technology,2009,42(11-12):1082-1088. [3] 张永宏,胡德金,张凯,等. 基于进化神经网络的曲面磨削表面粗糙度预测[J]. 上海交通大学学报,2005,39(3):373-376. ZHANG Yonghong,HU Dejin,ZHANG Kai,et al. Prediction of the surface roughness in curve grinding based on evolutionary neural networks[J]. Journal of Shanghai Jiao Tong University,2005,39(3):373-376. [4] 李晓梅,丁宁,朱喜林. 表面粗糙度模糊神经网络在线辨识模型[J]. 机械工程学报,2007,43(3):212-217. LI Xiaomei,DING Ning,ZHU Xilin. Surface roughness fuzzy neural network identification model wood online[J]. Journal of Mechanical Engineering,2007,43(3):212-217. [5] WEN Long,LI Xinyu,GAO Liang,et al. Surface roughness prediction in end milling by using predicted point oriented local linear estimation method[J]. The International Journal of Advanced Manufacturing Technology,2016,84(9-12):2523-2535. [6] 侯文擎,叶鸣,李巍华. 基于改进堆叠降噪自编码的滚动轴承故障分类[J]. 机械工程学报,2018,54(7):87-96. HOU Wenqin,YE Ming,LI Weihua. Rolling element bearing fault classification using improved stacked de-noising auto-encoders[J]. Journal of Mechanical Engineering,2018,54(7):87-96. [7] JING Luyang,ZHAO Ming,LI Pin,et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement,2017,2017(11):1-10. [8] 孙文珺,邵思羽,严如强. 基于稀疏自动编码深度神经网络的感应电机故障诊断研究[J]. 机械工程学报,2016,52(9):65-71. SUN Wenjun,SHAO Siyu,YAN Ruqiang. Induction motor fault diagnosis based on sparse auto-encoder deep neural network[J]. Journal of Mechanical Engineering,2016,52(9):65-71. [9] 李梦园. 深度学习算法在表面缺陷识别中的应用研究[D]. 杭州:浙江工业大学,2015. LI Mengyuan. Research and application of deep learning algorithm in surface defect recognition[D]. Hangzhou:Zhejiang University of Technology,2015. [10] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation.,2006,18(7):1527-1554. [11] SMOLENSK P. Information processing in dynamical systems:Foundations of harmony theory[C]//Parallel Distributed Processing:Foundations,Vol. 1. Cambridge,MA,USA:MIT Press,1986:194-281. [12] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,331(5786):504-507. [13] 王立中,管声启. 基于深度学习算法的带钢表面缺陷识别[J]. 西安工程大学学报,2017,31(5):669-674. WANG Lizhong,GUAN Shengqi. Strip steel surface defect recognition based on deep learning[J]. Journal of Xi'an Polytechnic University,2017,31(5):669-674. [14] TOWELL G G,SHAVLIK J W. Knowledge-based artificial neural networks[J]. Artificial Intelligence,1994,70(1-2):119-165. [15] 孙晨,周志华,陈兆乾. 神经网络规则抽取研究[J]. 计算机应用研究,2000,17(2):34-37. SUN Chen,ZHOU Zhihua,CHEN Zhaoqian. Study on rule extraction of neural network[J]. Application Research of Computers,2000,17(2):34-37. [16] PENNING H L H D,AVILA GARCEZ A S D,LAMB L C,et al. A neural-symbolic cognitive agent for online learning and reasoning[J]. Proc. IJCAI,2011:1653-1658. [17] TRAN S N,GARCEZ A S D. Knowledge extraction from deep belief networks for images[J]. Proc. IJCAI-Workshop Neural-Symbolic Learn. Reason.,2013:1-6. [18] LI Shen,XU Hengru,LU Zhengdong. Generalize symbolic knowledge with neural rule engine[J]. 2018,arXiv preprint:1808.10326. [19] 陈果,宋兰琪,陈立波. 基于神经网络规则提取的航空发动机磨损故障诊断知识获取[J]. 航空动力学报,2008(12):2170-2176. CHEN Guo,SONG Lanqi,CHEN Libo. Knowledge acquisition for aero2engine wear fault diagnosis based on rule extraction from neural networks[J]. Journal of Aerospace Power,2008(12):2170-2176. [20] ZHENG Ni,ZHANG Lin,WANG Wenfeng,et al. Research on fault diagnosis method based on rule base neural network[J]. Journal of Control Science and Engineering,2017,2017:1-7. [21] YU Jianbo,XI Lifeng,ZHOU Xiaojun. Intelligent monitoring and diagnosis of manufacturing processes using an integrated approach of KBANN and GA[J]. Computers in Industry,2008,59(5):489-501. [22] HINTON G E. Training products of experts by minimizing contrastive Divergence[J]. Neural Computation,2002:1771-1800. [23] PINKAS G. Reasoning,nonmonotonicity and learning in connectionist networks that capture propositional knowledge[J]. Artificial. Intelligence.,1995,77(2):203-247. [24] TRAN S N,GARCEZ A S D. Deep logic networks:Inserting and extracting knowledge from deep belief networks[J]. IEEE Transactions on Neural Networks & Learning Systems,2018,29(2):246-258. [25] HOLLAND J H. An introductory analysis with applications to biology[M]. Ann Arbor:University of Michigan Press,1975. [26] FREITAS A A,CONCEICAO R I. A survey of evolutionary algorithms for data mining and knowledge discovery[M]. Ghosh A,Tsutsui S eds. Advances in Evolutionary Computing. Natural Computing Series. Springer,Berlin,Heidelberg,2003:819-845 [27] FERNANDO S O,AMY B. INSS:A hybrid system for constructive machine learning[J]. Neurocomputing,1999,28(1-3):191-205. [28] MURPHY PM,AHA DW. UCI repository of machine learning databases[J]. Dept. Inf. Computation. Sci.,Univ. California,Irvine,CA,1994. [29] KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceeding of the Fourteenth International Joint Conference on Artificial Intelligence. San Francisco,CA:Morgan Kaufmann,1995:1137-1143. [30] BROSHEER B C,How smooth is smooth? Part-I,specification and evaluation of machined finishes[J]. American Machinist,McGrow-Hill Publishing Company,1948:97-112. [31] LOU S J. Development of four in-process surface recognition systems to predict surface roughness in end milling[C]//Retrospective Theses and Dissertations,1997,Iowa State University. Ames. Lowa:Digital Repository@Iowa State University,http://lib.dr.iastate.edu/. |