• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (6): 91-103.doi: 10.3901/JME.2024.06.091

• 特邀专栏:数据-知识混合驱动的智能制造系统 • 上一篇    下一篇

扫码分享

基于特征重构深度置信网络的车用电机复合故障定位研究

赵嗣芳1,2, 宋强1,2, 王明生1,2, 赖武轩1,2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工大学电动车辆国家工程实验室 北京 100081
  • 收稿日期:2023-04-30 修回日期:2023-12-07 出版日期:2024-03-20 发布日期:2024-06-07
  • 通讯作者: 宋强,男,1973年出生,博士,副教授,博士研究生导师。主要研究方向为电传动控制及故障诊断研究。E-mail:songqiang@bit.edu.cn
  • 作者简介:赵嗣芳,男,1992年出生,博士研究生。主要研究方向为永磁同步电机故障诊断、电机控制。E-mail:2009zsf@sina.com
  • 基金资助:
    河北省重点研发计划资助项目(20312203D)。

Study of Compound Fault Location for Vehicle Motors Based on the Deep Belief Network with Feature Reconstruction

ZHAO Sifang1,2, SONG Qiang1,2, WANG Mingsheng1,2, LAI Wuxuan1,2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081
  • Received:2023-04-30 Revised:2023-12-07 Online:2024-03-20 Published:2024-06-07

摘要: 永磁同步电机(Permanent magnet synchronous motor, PMSM)故障产生的机理较为复杂且每种电机故障的产生通常相互关联,复合故障定位是其故障诊断研究的难点所在。在电动汽车应用场合中,PMSM普遍存在变转速工作模式,变工况下的PMSM故障定位在工程应用中将具有重要价值。为了提高变转速工况下车用PMSM的复合故障定位精度,对基于特征重构和深度置信网络(Deep belief network, DBN)的新型PMSM复合故障定位方法进行研究。首先基于PMSM的振动特性分析,明晰转子偏心及轴承内圈故障下电机的复合故障特征分量;然后采用Vold-Kalman阶比追踪(Vold-Kalman filtering order tracking,VKF-OT)和角域重构算法实现对复合故障特征分量提取与重构,以减弱或消除转速变化对复合故障特征的影响。最后将特征重构信号用于构建基于DBN的故障定位模型,从而实现变转速工况下车用电机复合故障的定位。试验结果表明,基于特征重构深度置信网络的复合故障定位精度可达99.5%。

关键词: 永磁同步电机, 变转速, 复合故障, 故障定位, 深度置信网络

Abstract: The faulting mechanism of permanent magnet synchronous motor (PMSM) is complicated. Meanwhile, the occurrence of each kind of motor fault type is usually related to other faults. Therefore, the compound fault location of PMSM is difficult to be researched. Besides that, it’s common for PMSM to operate under variable speed conditions in automotive applications. Thus, realizing the fault location under variable operating conditions would be of great value in engineering applications. In order to improve the compound fault location accuracy of PMSM under variable speeds, a novel PMSM compound fault location method based on feature reconstruction and the deep belief network (DBN) is studied. Firstly, based on the vibration characteristic analysis of PMSM, the compound fault characteristic components of PMSM under rotor eccentricity, bearing inner ring fault, and the faulting mechanism of the compound fault are clarified. Next, the Vold-Kalman filtering order tracking (VKF-OT) and the angle-domain reconstruction algorithms are employed to extract the compound fault feature component and reconstruct the signal, thus the influence of variable speeds on the compound fault feature could be weakened or eliminated. Finally, the reconstructed signal is used to construct the fault location model based on DBN, and the compound fault of PMSM under variable speeds can be diagnosed. The experimental results show that the compound-fault-location accuracy based on the feature reconstruction and DBN can reach 99.5%.

Key words: permanent magnet synchronous motor, variable speeds, compound fault, fault location, deep belief network

中图分类号: