• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (12): 77-89.doi: 10.3901/JME.2024.12.077

• 特邀专栏:可解释可信AI驱动的智能监测与诊断 • 上一篇    下一篇

扫码分享

基于深度信号分离的航空发动机可解释智能诊断方法

王义1,2, 丁嘉凯1,2, 孙浩然1,2, 秦毅1,2, 汤宝平1,2   

  1. 1. 重庆大学机械与运载工程学院 重庆 400044;
    2. 重庆大学高端装备机械传动全国重点实验室 重庆 400044
  • 收稿日期:2023-11-20 修回日期:2024-05-10 出版日期:2024-06-20 发布日期:2024-08-23
  • 作者简介:王义(通信作者),男,1989年出生,博士,副教授,博士研究生导师。主要研究方向为非平稳信号处理、微弱信号增强、无键相的瞬时相位估计、旋转机械状态监测、流形学习及深度学习等。E-mail:wycqdx@cqu.edu.cn;丁嘉凯,男,1996年出生,博士研究生。主要研究方向为非平稳信号处理、微弱故障增强、时频分析和变工况下旋转机械故障诊断。E-mail:cqdxdjk@cqu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52175076)。

Interpretable Intelligent Diagnosis Method for Aero-engines Based on Deep Signal Separation

WANG Yi1,2, DING Jiakai1,2, SUN Haoran1,2, QIN Yi1,2, TANG Baoping1,2   

  1. 1. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044;
    2. State Key Laboratory of Mechanical Transmission for Advanced Equipment, Chongqing University, Chongqing 400044
  • Received:2023-11-20 Revised:2024-05-10 Online:2024-06-20 Published:2024-08-23

摘要: 针对现有时频分析和信号分解等谐波提取方法在进行旋转机械无键相阶次跟踪应用时,存在无法自适应提取具有明确物理意义的转速谐波分量的问题,提出一种基于时频空间深度二值掩蔽模型的可解释性转速谐波信号自适应分离方法。首先构造一系列具有明确物理意义的转速谐波瞬时频率变化的仿真模板信号作为深度二值掩蔽模型的训练样本,然后利用构建的仿真模板信号转速基础谐波和高阶谐波的时频表征生成基础谐波时频空间二值掩蔽模型训练目标,建立起仿真模板信号时频空间和转速基础谐波时频图像之间的深度非线性映射关系,以实现转速基础谐波分量的准确分离提取和高阶谐波分量的可信掩蔽抑制,确保经深度二值掩蔽模型所得到的谐波分量具备明确的物理意义。再将深度分离所得的基础谐波分量经希尔伯特变换得到与转速信号深度非线性映射相关的瞬时相位信息,并将其应用于原始信号等角度重采样中以完成精确的阶次跟踪。综上所述,所提方法克服了传统无键相阶次跟踪方法严重依赖专家经验的问题,可为传动系统的无键相阶次跟踪提供具有明确物理意义的瞬时相位支撑。

关键词: 深度信号分离模型, 时频空间二值掩蔽, 瞬时相位信息, 变转速工况, 无键相阶次跟踪, 可解释深度模型

Abstract: To address the problem that existing harmonic extraction methods such as time-frequency analysis and signal decomposition cannot adaptively extract the rotational speed harmonic components with clear physical meaning when performing tacho-less order tracking(TLOT) applications for rotating machineries, an interpretable rotational speed harmonic signal adaptive separation method based on a time-frequency spatial deep binary mask model is proposed. Firstly, a series of simulated template signals with clear physical meaning of the instantaneous frequency(IF) change of the tacho harmonics are constructed as training samples for the deep binary mask model, and then the time-frequency representation(TFR) of the tacho fundamental harmonics and higher-order harmonics of the constructed simulated template signals are used to generate the training target of the binary mask model in the time-frequency(TF) space of the fundamental harmonics. The non-linear mapping relationship between the TF space of the simulated template signal and the TF image of the tacho fundamental harmonics is established to achieve the accurate separation and extraction of the tacho fundamental harmonic components and the credible masking suppression of the tacho higher-order harmonic components, ensuring that the harmonic components obtained by the deep binary mask model have a clear physical meaning. Then, the instantaneous phase information related to the deep nonlinear mapping of the rotational speed signal is obtained by the Hilbert transform of the fundamental harmonics obtained by deep separation, and applied to the original signal with equal angle resampling to accomplish accurate order tracking. In summary, the proposed method overcomes the problem that the traditional TLOT method relies heavily on expert experience, which can provide instantaneous phase support with clear physical meaning for TLOT of the transmission system.

Key words: deep signal separation model, time-frequency spatial binary mask, instantaneous phase information, variable speed condition, tacho-less order tracking, interpretable deep model

中图分类号: