[1] XIE Yuanhong,XIAO Yi,LÜ Jiaxin,et al. Influence of creep on preload relaxation of bolted composite joints:Modeling and numerical simulation[J]. Composite Structures,2020,112332(245):1-15. [2] HAN Qinan,LEI Xusheng,YANG Hao,et al. Effects of temperature and load on fretting fatigue induced geometrically necessary dislocation distribution in titanium alloy[J]. Materials Science and Engineering A,2021,140308(800):1-15. [3] BHATTI N A,PEREIRA K,WAHAB M A. A continuum damage mechanics approach for fretting fatigue under out of phase loading[J]. Tribology International,2017,117:39-51. [4] MARIO L,DANIELE B. Fretting fatigue analysis of additively manufactured blade root made of intermetallic Ti-48Al-2Cr-2Nb alloy at high temperature[J]. Materials,2018,11(7):1052-1060. [5] HU Chen,WEI Dasheng,WANG Yanrong,et al. Experimental and numerical study of fretting fatigue in dovetail assembly using a total life prediction model[J]. Engineering Fracture Mechanics,2018,205:301-318. [6] SUN Shouyi,LI Lei,YANG Weizhu,et al. RA-based fretting fatigue life prediction method of Ni-based single crystal superalloys[J]. Tribology International,2019,134:109-117. [7] BHATTI N A,PEREIRA K,WAHAB M A. Effect of stress gradient and averaging on fretting fatigue crack initiation angle and life[J]. Tribology International,2018,131:212-221. [8] ARAÚJO J A,CASTRO F C,MATOS I M,et al. Life prediction in multiaxial high cycle fretting fatigue[J]. International Journal of Fatigue,2020,105504(134):1-10. [9] PINTO A L,ARAÚJO J A,TALEMI R. Effects of fretting wear process on fatigue crack propagation and life assessment[J]. Tribology International,2021,106787(156):1-15. [10] TENG Zhenjie,WU Haoran,HUANG Zhiyong,et al. Effect of mean stress in very high cycle fretting fatigue of a bearing steel[J]. International Journal of Fatigue,2021,106262(149):1-15. [11] WALVEKAR A A,SADEGHI F. Rolling contact fatigue of case carburized steels[J]. International Journal of Fatigue,2017,95:264-281. [12] WANG Jingchen,GAO Yukui. Numerical and experimental investigations on fretting fatigue properties of GH4169 superalloy at the elevated temperature[J]. International Journal of Fatigue,2021,106274(149):1-15. [13] FEI Shen,KE Liaoliang,ZHOU Kun. A debris layer evolution-based model for predicting both fretting wear and fretting fatigue lifetime[J]. International Journal of Fatigue,2021,105928(142):1-10. [14] SZUSTA J. Low cycle fatigue of metallic materials under uniaxialloading at elevated temperature[J]. International Journal of Fatigue,2018,114:272-281. [15] ABBASI F,MAJZOOBI G H. An investigation into the effect of elevated temperatures on fretting fatigue response under cyclic normal contact loading[J]. Theoretical and Applied Fracture Mechanics,2018,93:144-154. [16] SUN Shouyi,LI Lei,YUE Zhufeng,et al. Fretting fatigue failure behavior of Nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature[J]. Tribology International,2019,105986(142):1-13. [17] HAN Qinan,QIU Wenhui,HE Zhiwu,et al. The effect of crystal orientation on fretting fatigue crack formation in Ni-based single-crystal superalloys:In-situ SEM observation and crystal plasticity finite element simulation[J]. Tribology International,2018,125:209-219. [18] SU Yue,HAN Qinan,QIU Wenhui,et al. High temperature in-situ SEM observation and crystal plasticity simulation on fretting fatigue of Ni-based single crystal superalloys[J]. International Journal of Plasticity,2020,102645(127):1-15. [19] MACDONALD B E,FU Z Q,WANG X,et al. Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy[J]. Acta Materialia,2019,181:25-35. [20] RUIZ C,BODDINGTON P H B,CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics,1984,24(3):208-217. [21] HUO Junzhou,YANG Bowen,REN Rong,et al. Research on fretting fatigue life estimation model considering plastic effect[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2022,44(4):1-18. |