Journal of Mechanical Engineering ›› 2024, Vol. 60 ›› Issue (20): 120-133.doi: 10.3901/JME.2024.20.120
Previous Articles Next Articles
ZHANG Wei, LI Rujun, GE Shitao, PENG Yan
Received:
2023-10-11
Revised:
2024-04-05
Online:
2024-10-20
Published:
2024-11-30
CLC Number:
ZHANG Wei, LI Rujun, GE Shitao, PENG Yan. Two-scale Analysis of High-cycle Fatigue Damage Based on Intrinsic Dissipation Theory[J]. Journal of Mechanical Engineering, 2024, 60(20): 120-133.
[1] LIAO D,ZHU S,CORREIA J,et al. Recent advances on notch effects in metal fatigue:A review[J]. Fatigue & Fracture of Engineering Materials & Structures,2020,43(4):637-659. [2] LIU X,WU Q,SU S,et al. Evaluation and prediction of material fatigue characteristics under impact loads:review and prospects[J]. International Journal of Structural Integrity,2022,13(2):251-277. [3] XUE L,SHANG D,LI D,et al. Equivalent energy-based critical plane fatigue damage parameter for multiaxial LCF under variable amplitude loading[J]. International Journal of Fatigue,2019,131:105350. [4] RONCHEI C,CARPINTERI A,SCORZA D,et al. The RED criterion for fatigue life assessment of metals under non-proportional loading[J]. International Journal of Fatigue,2022,163:107080. [5] ZHU S,YE W,CORREIA J,et al. Stress gradient effect in metal fatigue:Review and solutions[J]. Theoretical and Applied Fracture Mechanics,2022,121:103513. [6] CARPINTERI A,SPAGNOLI A,VANTADORI S. A review of multiaxial fatigue criteria for random variable amplitude loads[J]. Fatigue & Fracture of Engineering Materials & Structures,2017,40(7):1007-1036. [7] SCOTT-EMUAKPOR O,GEORGE T,CROSS C,et al. A new distortion energy-based equivalent stress for multiaxial fatigue life prediction[J]. International Journal of Non-Linear Mechanics,2012,47(3):29-37. [8] FELTNER C,MORROR J. Microplastic strain hysteresis energy as a criterion for fatigue fracture[J]. Journal of Basic Engineering,1961,83(1):15-22. [9] OSTERGREN W. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature,low cycle fatigue[J]. Journal of Testing & Evaluation,1976,4(5):327-339. [10] GARUD Y. A new approach to the evaluation of fatigue under multiaxial loadings[J]. Journal of Engineering Materials & Technology Transactions of the ASME,1981,103(2):118-125. [11] 彭艳,李浩然. 考虑附加强化效应的多轴高周疲劳损伤演化模型[J]. 机械工程学报,2015,51(16):135-142. PENG Yan,LI Haoran. Multi axial high cycle fatigue damage evolution model including additional hardening effect[J]. Journal of Mechanical Engineering,2015,51(16):135-142. [12] WU Z,HU X,LI Z,et al. Evaluation of fatigue life for titanium alloy TC4 under variable amplitude multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2015,38(4):402-409. [13] WU Z,HU X,SONG Y. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J]. International Journal of Fatigue,2014,59:170-175. [14] YU Z,ZHU S,LIU Q,et al. A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades[J]. Materials,2017,10(5):513. [15] SHEN X,ZHU S,HAO Y,et al. A new critical plane-energy model for multiaxial fatigue life prediction of turbine disc alloys[J]. Engineering Failure Analysis,2018,93:55-63. [16] ZHU S,YU Z,CORREIA J,et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials[J]. International Journal of Fatigue,2018,112:279-288. [17] LEE B,KIM K,NAM K. Fatigue analysis under variable amplitude loading using an energy parameter[J]. International Journal of Fatigue,2003,25(7):621-631. [18] NOBAN M,JAHED H,WINKLER S,et al. Fatigue characterization and modeling of 30CrNiMo8HH under multiaxial loading[J]. Materials Science and Engineering A,2011,528(6):2484-2494. [19] XIAO Y,LI S,GAO Z. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue,1998,20(7):503-508. [20] CHABOCHE J,LESNE P. A non-linear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures,1988,11(1):1-17. [21] SHEN F,VOYIADJIS G,HU W,et al. Analysis on the fatigue damage evolution of notched specimens with consideration of cyclic plasticity[J]. Fatigue & Fracture of Engineering Materials & Structures,2015,38(10):1194-1208. [22] WANG X,MENG Q,HU W. Fatigue life prediction for butt-welded joints considering weld-induced residual stresses and initial damage,relaxation of residual stress,and elasto-plastic fatigue damage[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(6):1373-1386. [23] ZHAN Z,HUA L,LAM K. Development of a novel fatigue damage model with AM effects for life prediction of commonly-used alloys in aerospace[J]. International Journal of Mechanical Sciences,2019,155:110-124. [24] ZHAN Z. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition[J]. International Journal of Fatigue,2019,121:20-29. [25] OTTOSEN N,STENSTRM R,RISTINMAA M. Continuum approach to high-cycle fatigue modeling[J]. International Journal of Fatigue,2008,30(6):996-1006. [26] GALL K,HORSTEMEYER M,MCDOWELL D,et al. Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys[J]. Mechanics of Materials,2000,2(5):277-301. [27] MCDOWELL D,GALL K,HORSTEMEYER M,et al. Microstructure-based fatigue modeling of cast A356-T6 alloy[J]. Engineering Fracture Mechanics,2003,70(1):49-80. [28] 张哲峰,段启强,王中光. 铜晶体的疲劳损伤微观机制[J]. 金属学报,2005,41(11):1143-1149. ZHANG Zhefeng,DUAN Qiqiang,WANG Zhongguang. Micro-mechanisms of fatigue damage in copper crystals[J]. Acta Metallurgica Sinica,2005,41(11):1143-1149. [29] AGBESSI K,SAINTIER N,PALIN-LUC T. Microstructure-based study of the crack initiation mechanisms in pure copper under high cycle multiaxial fatigue loading conditions[J]. Procedia Structural Integrity,2016,2:3210-3217. [30] GUERCHAIS R,MOREL F,SAINTIER N,et al. Influence of the microstructure and voids on the high-cycle fatigue strength of 316L stainless steel under multiaxial loading[J]. Fatigue & Fracture of Engineering Materials and Structures,2015,38(9):1087-1104. [31] LAIARINANDRASANA L,MORGENEYER T,CHENG Y,et al. Microstructural observations supporting thermography measurements for short glass fibre thermoplastic composites under fatigue loading[J]. Continuum Mechanics and Thermodynamics,2020,32:451-469. [32] SUN B,XU Y,LI Z. Multi-scale fatigue model and image-based simulation of collective short cracks evolution process[J]. Computational Materials Science,2016,117:24-32. [33] LAUTROU N,THEVENET D,COGNARD J. Fatigue crack initiation life estimation in a steel welded joint by the use of a two-scale damage model[J]. Fatigue & Fracture of Engineering Materials & Structures,2009,32(5):403-417. [34] QIAN C,WESTPHAL T,NIJSSEN R. Micro-mechanical fatigue modelling of unidirectional glass fibre reinforced polymer composites[J]. Computational Materials Science,2013,69(1):62-72. [35] LEMAITRE J,DESMORAT J. A two scale damage concept applied to fatigue[J]. International Journal of Fracture,1999,97:67-81. [36] TANG J,HU W,MENG Q,et al. A novel two-scale damage model for fatigue damage analysis of transition region between high- and low-cycle fatigue[J]. International Journal of Fatigue,2017,105:208-218. [37] LEMAITRE J. A course on damage mechanics[M]. Berlin Heidelberg:Springer-Verlag,1996. [38] 张行,赵军. 金属构件应用疲劳损伤力学[M]. 北京:国防工业出版社,1998. ZHANG Xing,ZHAO Jun. Application of fatigue damage mechanics to metal components[M]. Beijing:National Defense Industry Press,1998. [39] 杨锋平,孙勤,罗金恒,等. 一个高周疲劳损伤演化修正模型[J]. 力学学报,2012,44(1):140-146. YANG Fengping,SUN Qin,LUO Jinheng,et al. A corrected damage law for high cycle fatigue[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(1):140-146. [40] 杨晓华,李年. 2Cr13钢高周疲劳微塑性损伤特性研究[J]. 材料热处理学报,1999,20:31-36. YANG Xiaohua,LI Nian. Characterization of microplasticity damage developed during high cycle fatigue in 2Cr13[J]. Transactions of Metal Heat Treatment,1999,20:31-36. [41] LEMAITRE J. Micro-mechanics of crack initiation[J]. International Journal of Fracture,1990,42(1):87-99. [42] HILL R,RICE J. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics & Physics of Solids,1972,20:401-413. [43] RICE J. Inelastic constitutive relations for solids:An internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics & Physics of Solids,1971,19(6):433-455. [44] 王自强,段祝平. 塑性细观力学[M]. 北京:科学出版社,1995. WANG Ziqiang,DUAN Zhuping. Micromechanics of plasticity[M]. Beijing:Science Press,1995. [45] PAPADOPOULOS I. Exploring the high-cycle fatigue behaviour of metals from the mesoscopic scale. Journal of the Mechanical Behavior of Materials,1996,6(2):93-118. [46] BASINSKI Z,BASINSKI S. Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals[J]. Progress in Materials Science,1992,36(2):89-148. [47] 阚前华,康国政,徐祥. 非线性本构关系在ABAQUS中的实现[M]. 北京:科学出版社,2019. KAN Qianhua,KANG Guozheng,XU Xiang. Implementations of nonlinear constitutive relations in ABAQUS[M]. Beijing:Science Press,2019. [48] PAPADOPOULOS I,PIERMARIA D,CARLO G,et al. A comparative study of multiaxial high-cycle fatigue criteria for metals[J]. International Journal of Fatigue,1997,19(3):219-235. [49] LEMAITRE J,DESMORAT R. Engineering damage mechanics[J]. Berlin:Springer,2005. [50] 杨新华,陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社,2018. YANG Xinhua,CHEN Chuanyao. Fatigue and fracture[M]. Wuhan:Huazhong University of Science & Technology Press,1986. [51] 姚卫星. 结构疲劳寿命分析[M]. 北京:科学出版社,2019. YAO Weixing. Fatigue life estimation of structures[M]. Beijing:Science Press,2019. [52] 张成成,姚卫星. 一种新的多轴高周疲劳寿命预测模型[J]. 力学学报,2010,42(6):1225-1230. ZHANG Chengcheng,YAO Weixing. A new model for life prediction of multiaxial high-cycle fatigue[J]. Chinese Journal of Theoretical and Applied Mechanics,2010,42(6):1225-1230. [53] PAPUGA J. Answer to comments on “A survey on evaluating the fatigue limit under multiaxial loading” [Int J Fatigue 33(2011) 153-165][J]. International Journal of Fatigue,2011,33(10):1396-1402. [54] KIM K. A fatigue life model for 5% chrome work roll steel under multiaxial loading[J]. International Journal of Fatigue,2004,26(7):683-689. [55] PENG W,SHEN L,SHEN Y,et al. Reliability analysis of repairable systems with recurrent misuse-induced failures and normal-operation failures[J]. Reliability Engineering and System Safety,2018,171:87-98. [56] PENG W,LI Y,YANG Y,et al. Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas[J]. IEEE Transactions on Reliability,2016,65(2):624-639. [57] XU H,LI W,LI M,et al. Multidisciplinary robust design optimization based on time-varying sensitivity analysis[J]. Journal of Mechanical Science and Technology,2018,32(3):1195-1207. [58] KANAZAWA K,MILLER K,BROWN M. Low-cycle fatigue under out-of-Phase loading conditions[J]. Journal of Engineering Materials and Technology,1977,99(3):222-228. [59] ITOH T,YANG T. Material dependence of multiaxial low cycle fatigue lives under non-proportional loading[J]. International Journal of Fatigue,2011,33(8):1025-1031. [60] LAZZARIN P,SUSMEL L. A stress-based method to predict lifetime under multiaxial fatigue loadings[J]. Fatigue Fracture of Engineering Materials and Structures,2003,26(12):1171-1187. [61] CARPINTERI A,SPAGNOLI A,VANTADORI S. Fatigue life estimation in welded joints under multiaxial loadings[J]. Frattura ed Integrita Strutturale,2009,3(9):46-54. [62] MCDIARMID D L. Multiaxial fatigue life prediction using a shear stress based critical plane failure criterion[M]//Solin J,Marquis G,SiljanderA,et al. Fatigue Design.Espoo:VTTTechnical Research Centre of Finland,1992,2:21-33. [63] MCDIARMID D. A shear stress based critical-plane criterion of multiaxial fatigue failure for design and life prediction[J]. Fatigue and Fracture of Engineering Materials and Structures,1994,17(12):1475-1484. [64] PAPADOPOULOS I. Long life fatigue under multiaxial loading[J]. International Journal of Fatigue,2001,23(10):839-849. |
[1] | WU Jizhan, WEI Peitang, WU Shaojie, LIU Huaiju, ZHU Caichao. Rolling Contact Fatigue Performance Prediction and Surface Integrity Optimization of Aviation Gear Steel [J]. Journal of Mechanical Engineering, 2024, 60(8): 81-93. |
[2] | ZHANG Junhui, LIU Shihao, XU Bing, HUANG Weidi, LÜ Fei, HUANG Xiaochen. Research Status and Development Trends on Intelligent Key Technology of the Axial Piston Pump [J]. Journal of Mechanical Engineering, 2024, 60(4): 32-49. |
[3] | LIU Xiaofeng, ZHANG Tianyu, WEI Daiping, BO Lin, CHEN Bingkui. Adaptive Particle Filtering Prediction of Crack Damage Evolution in Composite Materials [J]. Journal of Mechanical Engineering, 2024, 60(18): 32-42. |
[4] | CHEN Jian, MENG Yixing, YUAN Shenfang, XU Qiuhui, WANG Hui. Digital Twins Prediction of Crack Growth Life for the Lap Joint Structure Combined with Guided Wave Monitoring Data [J]. Journal of Mechanical Engineering, 2024, 60(16): 34-42. |
[5] | ZHAO Lei, ZHANG Libin, SONG Kai, XU Lianyong, HAN Yongdian, HAO Kangda. Research on Creep-fatigue Cyclic Deformation of New Martensitic Heat Resistant Steel [J]. Journal of Mechanical Engineering, 2024, 60(16): 118-129. |
[6] | ZHU Ting, CHEN Zhaoxiang, ZHOU Di, CHEN Zhen, HU Bing, PAN Ershun. Bayesian-LSTM Neural Network-based Remaining Useful Life Prediction and Uncertainty Estimation of Rollers in A Hot Strip Mill [J]. Journal of Mechanical Engineering, 2024, 60(11): 181-190. |
[7] | HE Haifeng, LIU Huaiju, ZHU Caichao, LI Gaomeng, CHEN Difa. Quantitative Effect of Residual Stress on Gear Bending Fatigue [J]. Journal of Mechanical Engineering, 2023, 59(4): 53-61. |
[8] | LIU Zhizhuang, WU Hao. Data-driven Fatigue Life Prediction Method Based on the Influence of Parameters [J]. Journal of Mechanical Engineering, 2023, 59(4): 71-79. |
[9] | WANG Yu, LIU Qiufa, PENG Yizhen. A Remaining Useful Life Prediction Approach with Nonuniform Monitoring Conditions for Rolling Bearings [J]. Journal of Mechanical Engineering, 2023, 59(23): 96-104. |
[10] | YU Jian, GOU Baiyong, CHEN Guiyong, ZHANG Teng, MA Binlin, FAN Xianghong, CHEN Xin, WANG Yitao. Analysis of Fatigue Crack Growth Performance of Adhesive-rivet Hybrid Repaired Structure [J]. Journal of Mechanical Engineering, 2023, 59(22): 352-368. |
[11] | YANG Bowen, GAO Qiang, WANG Shuo, HUO Junzhou. Research on High Temperature Fretting Fatigue Life Prediction Based on Surface-to-surface Contact Structure [J]. Journal of Mechanical Engineering, 2023, 59(18): 165-174. |
[12] | SHEN Tianhao, DING Kang, LI Jie, HUANG Ruyi, LI Weihua. Graph Structure and Temporal Data Driven Remaining Useful Life Prediction Method for Machinery [J]. Journal of Mechanical Engineering, 2023, 59(12): 183-194. |
[13] | ZHENG Zhanguang, QIN Lidu, XIE Changji, PAN Shuqin, SUN Teng. Research Progress of Crystal Plastic Fatigue Indicator Parameters [J]. Journal of Mechanical Engineering, 2022, 58(8): 105-116. |
[14] | XUAN Fuzhen, ZHU Mingliang, WANG Guobiao. Retrospect and Prospect on Century-long Research of Structural Fatigue [J]. Journal of Mechanical Engineering, 2021, 57(6): 26-51. |
[15] | FU Yang, CAO Hongrui, GAO Weiqiang, GAO Wenhui. Digital Twin Driven Remaining Useful Life Prediction for Aero-engine Turbine Discs [J]. Journal of Mechanical Engineering, 2021, 57(22): 106-113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||