[1] 李玉海,王成波,陈亮,等. 先进战斗机寿命设计与延寿技术发展综述[J]. 航空学报,2021,42(8):50-76. LI Yuhai,WANG Chengbo,CHEN Liang,et al. Overview on development of advanced fighter life design and extension technology[J]. Journal of Aeronautics,2021,42(8):50-76. [2] 轩福贞,朱明亮,王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报,2021,57(6):26-51. XUAN Fuzhen,ZHU Mingliang,WANG Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering,2021,57(6):26-51. [3] 王彬文,陈先民,苏运来,等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报,2021,42(5):6-44. WANG Binwen,CHEN Xianmin,SU Yunlai,et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Journal of Aeronautics,2021,42(5):6-44. [4] LI Yizhao,ZHU Shunpeng,LIAO Ding,et al. Probabilistic modeling of fatigue cracks growth and experimental verification[J]. Engineering Failure Analysis,2020,118:104862. [5] 房芳,郑辉,汪玉,等. 机械结构健康监测综述[J]. 机械工程学报,2021,57(16):269-292. FANG Fang,ZHENG Hui,WANG Yu,et al. Mechanical structural health monitoring:A review[J]. Journal of Mechanical Engineering,2021,57(16):269-292. [6] 闫楚良. 我国飞机结构寿命可靠性评定理论与试验方法及创新[J]. 中国发明与专利,2018,15(9):6-11. YAN Chuliang. Theory and test method and innovation of life reliability assessment for aircraft structures in China[J]. China Inventions and Patents,2018,15(9):6-11. [7] MOLENT L,MAU V. Verification of an airframe fatigue life monitoring system using ex-service structure[J]. Engineering Failure Analysis,2017,83:207-219. [8] 刘亚威. 面向飞行器结构健康管理的数字孪生及应用研究综述[J]. 测控技术,2022,41(1):1-10. LIU Yawei. A review of digital twin and application research for structural health management of aircraft[J]. Measurement and Control Technology,2022,41(1):1-10. [9] SHAFTO M,CONROY M,DOYLE R,et al. Modeling,simulation,information technology & processing roadmap[J]. National Aeronautics and Space Administration,2012,32(2012):1-38. [10] 董雷霆,周轩,赵福斌,等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报,2021,42(3):113-141. DONG Leiting,ZHOU Xuan,ZHAO Fubin,et al. Key technologies for modeling and simulation of airframe digital twin[J]. Journal of Aeronautics,2021,42(3):113-141. [11] 刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1-10. LIU Datong,GUO Kai,WANG Benkuan,et al. Review and prospect of digital twin technology[J]. Journal of Instrumentation,2018,39(11):1-10. [12] 孙侠生,苏少普,孙汉斌,等. 国外航空疲劳研究现状及展望[J]. 航空学报,2021,42(5):45-70. SUN Xiasheng,SU Shaopu,SUN Hanbin,et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Journal of Aeronautics,2021,42(5):45-70. [13] 赵福斌,周轩,董雷霆. 基于数字孪生的飞机蒙皮裂纹智能检查维修策略[J]. 固体力学学报,2021,42(3):277-286. ZHAO Fubin,ZHOU Xuan,DONG Leiting. An intelligent digital-twin-based strategy for the inspection and repair of aircraft skin cracks[J]. Journal of Solid Mechanics,2021,42(3):277-286. [14] YE Yumei,YANG Qiang,YANG Fan,et al. Digital twin for the structural health management of reusable spacecraft:A case study[J]. Engineering Fracture Mechanics,2020,234:107076. [15] YUAN Shenfang,CHEN Jian,YANG Weribo,et al. On-line crack prognosis in attachment lug using Lamb wave-deterministic resampling particle filter-based method[J]. Smart Materials and Structures,2017,26(8):085016. [16] CHEN Jian,YUAN Shenfang,SBARUFATTI C,et al. Dual crack growth prognosis by using a mixture proposal particle filter and on-line crack monitoring[J]. Reliability Engineering and System Safety,2021,215:107758. [17] CHEN Jian,YUAN Shenfang,JIN Xin. On-line prognosis of fatigue cracking via a regularized particle filter and guided wave monitoring[J]. Mechanical Systems and Signal Processing,2019,131:1-17. [18] KARVE P M,GUO YU,KAPUSUZOGLU B,et al. Digital twin approach for damage-tolerant mission planning under uncertainty[J]. Engineering Fracture Mechanics,2020,225:106766. [19] SKORUPA M,MACHNIEWICZ T,SCHIJVE J,et al. Application of the strip-yield model from the NASGRO software to predict fatigue crack growth in aluminum alloys under constant and variable amplitude loading[J]. Engineering Fracture Mechanics,2007,74(3):291-313. [20] LESER P E,WARNER J E,LESER W P,et al. A digital twin feasibility study (Part II):Non-deterministic predictions of fatigue life using in-situ diagnostics and prognostics[J]. Engineering Fracture Mechanics,2020,229:106903. [21] MEI Hanfei,YUAN Shenfang,QIU Lei,et al. Damage evaluation by a guided wave-hidden Markov model based method[J]. Smart Materials and Structures,2016,25(2):025021. [22] QIU Lei,YUAN Shenfang,CHANG Fukuo,et al. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary conditions[J]. Smart Materials and Structures,2014,23(12):125001. [23] 袁慎芳. 结构健康监控[M]. 北京:国防工业出版社,2007. YUAN Shenfang. Structural health monitoring[M]. Beijing:Defense Industry Press,2007. [24] WANG Hui,YUAN Shenfang,XU Qiuhui,et al. A new GW-based heteroscedastic Gaussian process method for online crack evaluation[J]. Structural Health Monitoring,2022,21(6):2874-2889. [25] ARULAMPALAM M S,MASKELL S,GORDON N,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174-188. [26] 李宏坤,杨蕊,任远杰,等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报,2017,53(3):63-72. LI Hongkun,YANG Rui,REN Yuanjie,et al. Rolling element bearing diagnosis using particle filter and kurtogram[J]. Journal of Mechanical Engineering,2017,53(3):63-72. [27] TORKAMANI S,ROY S,BARKEY M E,et al. A novel damage index for damage identification using guided waves with application in laminated composites[J]. Smart Materials and Structures,2014,23(9):095015. [28] CORBETTA M,SBARUFATTI C,MANES A,et al. On dynamic state-space models for fatigue-induced structural degradation[J]. International Journal of Fatigue,2014,61:202-219. |