[1] 赵文滔,杨颜志,王长焕等. 基于贝叶斯推断的复合材料层间内聚力模型参数反演[J]. 机械工程学报, 2022,58(6):110-118. ZHAO Wentao,YANG Yanzhi,WANG Changhuan et al. Parameter inversion of interlaminar cohesion model for composite materials based on Bayesian inference[J]. Journal of Mechanical Engineering,2022,58(6):110-118. [2] DHARMANTO A,SAEPUDIN A. Fatigue life prediction of 180 Ton lifting spreader construction material ST43 using S-N curve[J]. Journal of Physics:Conference Series,2021,1764(1):012183. [3] 高建雄,安宗文,白学宗. 随机载荷下风电叶片复合材料剩余强度概率模型[J]. 太阳能学报,2018,39(8):2169-2175. GAO Jianxiong,AN Zongwen,BAI Xuezong. Probability model of composite residual strength of wind turbine blade under random load[J]. Acta solar energy Sinica,2018,39(8):2169-2175. [4] 陈基伟,姚卫星,宗俊达,等. 复合材料剩余刚度概率模型研究[J]. 南京航空航天大学学报,2019,51(4):534-539. CHEN Jiwei,YAO Weixing,ZONG Junda,et al. Study on probability model of composite residual stiffness[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(4):534-539. [5] CHAO W,ZHAO X,WEN H D et al. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures,2011,51(2):147-157. [6] HUANG Zhenyu,ZHANG Wei,QIAN Xudong et al. Fatigue behaviour and life prediction of filament wound CFRP pipes based on coupon tests[J]. Marine Structures,2020,72:102756. [7] 寇海霞. 复合材料风电叶片刚度退化模型研究[D]. 兰州:兰州理工大学,2019. KOU Haixia. Research on stiffness degradation model of composite wind turbine blade[D]. Lanzhou:Lanzhou University of technology,2019. [8] 陆毛须,姬晓慧,郝自清等. 复杂面内应力状态下平面编织高铝纤维增强氧化铝基复合材料强度及疲劳寿命预测方法[J]. 复合材料学报,2021,38(11):3785-3798. LU Maoxu,JI Xiaohui,HAO Ziqing,et al. Prediction method of strength and fatigue life of plane braided high alumina fiber reinforced alumina matrix composites under complex in-plane stress[J]. Journal of composites,2021,38(11):3785-3798. [9] 王顺. 基于能量理论的复合材料拉-压疲劳寿命预测研究[D]. 南京:南京航空航天大学,2020. WANG Shun. Research on tension compression fatigue life prediction of composites based on energy theory[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2020. [10] 廖兴升,梁智洪,傅继阳等. 基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命[J]. 复合材料学报,2021,38(10):3323-3337. LIAO Xingsheng,LIANG Zhihong,FU Jiyang et al. Prediction of residual fatigue life of glass fiber reinforced resin composite laminates based on frequency variation [J]. Journal of composite materials,2021,38(10):3323-3337. [11] 刘晓伟. P-S-N曲线估计与疲劳荷载统计建模的贝叶斯方法研究[D]. 哈尔滨:哈尔滨工业大学,2019. LIU Xiaowei. Bayesian method for P-S-N curve estimation and statistical modeling of fatigue load[D]. Harbin:Harbin Institute of technology,2019. [12] DAVIDE L,MALJAARS J,SNIJDER H H. Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference[J]. International Journal of Fatigue,2017,105:128-143. [13] ZONG Junda,YAO Weixing. Fatigue life prediction of composite structures based on online stiffness monitoring[J]. Journal of Reinforced Plastics & Composites,2017,36(14):1038-1057. [14] BANERJEE P,KARPENKO O,UDPA L et al. Prediction of impact-damage growth in GFRP plates using particle filtering algorithm[J]. Composites Structures,2018,194:527-536. [15] LOUTAS T,ELEFTHEROGLOU N,ZAROUCHAS D. A data-driven probabilistic framework towards the in-situ prognostics of fatigue life of composites based on acoustic emission data[J]. Composite Structures,2017,161:522-529. [16] CADINI F,ZIO E,AVRAM D. Monte Carlo-based filtering for fatigue crack growth estimation[J]. Probabilistic Engineering Mechanics,2009,24(3):367-373. [17] CRISTIANI D,SBARUFATTI C,GIGLIO M. Damage diagnosis and prognosis in composite double cantilever beam coupons by particle filtering and surrogate modelling[J]. Structural Health Monitoring,2021,20(3):1030-1050. [18] PENG T,LIU Y,SAXENA A et al. In-situ fatigue life prognosis for composite laminates based on stiffness degradation[J]. Composite Structures,2015,132:155-165. [19] CORBETTA M,SBARUFATTI C,GIGLIO M et al. A Bayesian framework for fatigue life prediction of composite laminates under co-existing matrix cracks and delamination[J]. Composite Structures,2018,187:58-70. [20] MUSTAFA G,CRAWFORD C,SULEMAN A. Fatigue life prediction of laminated composites using a multi-scale M-LaF and Bayesian inference[J]. Composite Structures,2016,151:149-161. [21] AL H,KL R. Stiffness-reduction mechanisms in composite laminates[J]. Damage in Composites Materials,ASTM STP 1982; 775:103-17. [22] JOFFE R,VARNA J. Analytical modeling of stiffness reduction in symmetric and balanced laminates due to cracks in 90° layers[J]. Composites Science & Technology,1999,59(11):1641-1652. [23] CHIACHÍO J,CHIACHÍO M,SAXENA A et al. Bayesian model selection and parameter estimation for fatigue damage progression models in composites[J]. International Journal of Fatigue,2015,70:361-373. [24] TAO C,JI H,QIU J et al. Characterization of fatigue damages in composite laminates using Lamb wave velocity and prediction of residual life[J]. Composite Structures,2017,166:219-228. [25] SAXENA A,GOEBEL K F,LARROSA C C et al. Accelerated aging experiments for prognostics of damage growth in composite materials[C]// The 8th International Workshop on Structural Health Monitoring,Vol 15,F.-K. Chang,editor. 2011.