[1] TANG Q H, HUANG Y, HUANG Y Y, et al. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing[J]. Materials Letters, 2015, 151(15):126-129. [2] 唐群华, 蔡小勇, 戴品强. CoCrFeMnNi高熵合金冷轧及退火后的晶界特征分布[J]. 金属热处理, 2016, 41(1):217-221. TANG Qunhua, CAI Xiaoyong, DAI Pinqiang. Grain boundary characteristic distribution of CoCrFeMnNi high entropy alloy after cold rolling and annealing[J]. Heat Treatment of Metals, 2016, 41(1):217-221. [3] 周晖. 塑性变形对CoCrFeNi高熵合金组织结构和性能的影响研究[D]. 南京:东南大学, 2018. ZHOU Hui. Effect of plastic deformation on microstructure and properties of CoCrFeNi high entropy alloy[D]. Nanjing:Southeast University, 2018. [4] SOURAV A, YEBAJI S, THANGARAJU S. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys[J]. Materials Science and Engineering A, 2020, 793:85-95. [5] TSIANIKAS S J, CHEN Y, JEONG J, et al. Forging strength-ductility unity in a high entropy steel[J]. Journal of Materials Science and Technology, 2022, 113:158-165. [6] SUN S, ZAI W, CHEN Y, et al. Effects of cold-rolling and subsequent annealing on the nano-mechanical and creep behaviors of CrCoNi medium-entropy alloy[J]. Materials Science and Engineering, 2022, 839:47-58 [7] KAUSHIK L, KIM M S, SINGH J, et al. Deformation mechanisms and texture evolution in high entropy alloy during cold rolling[J]. International Journal of Plasticity, 2021, 141(1):1284-1312. [8] LEE C F, SHUN T T. Age heat treatment of Al0.5CoCrFe1.5NiTi0.5 high-entropy alloy[J]. Metals, 2021, 11(1):1416-1427. [9] MALATJI N, LENGOPENG T, PITYANA S, et al. Effect of heat treatment on the microstructure, microhardness, and wear characteristics of AlCrFeCuNi high-entropy alloy[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(7-8):1-9. [10] CHO H S, BAE S J, NA Y S, et al. Influence of reduction ratio on the microstructural evolution and subsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires[J]. Journal of Alloys and Compounds, 2020, 821:34-40. [11] DUAN C, REIBERG M, KUTLESA P, et al. Strain-hardening properties of the high-entropy alloy MoNbTaTiVZr processed by high-pressure torsion[J]. Continuum Mechanics and Thermodynamics, 2021, 34:475-489. [12] KE Q, XU D, XIONG D. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V[J]. Journal of Mechanical Science and Technology, 2017, 31(1):309-316. [13] JAMIL M, ZHAO W, HE N, et al. Heat transfer efficiency of cryogenic-LN2 and CO2-snow and their application in the Turning of Ti-6AL-4V[J]. International Journal of Heat and Mass Transfer, 2021, 166:132-143. [14] 谢海龙, 董志刚, 康仁科, 等. C/E复合材料螺旋铣孔切屑形状与切削温度研究[J]. 北京航空航天大学学报, 2017, 43(2):328-334. XIE Hailong, DONG Zhigang, KANG Renke, et al. Research on chip shape and cutting temperature of spiral milling C/E composites[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(2):328-334. [15] 张斌. 数控加工表面粗糙度的预测[D]. 西安:西北工业大学, 2007. ZHANG Bin. Prediction of surface roughness in NC machining[D]. Xi'an:Northwestern Polytechnical University, 2007 |