[1] YEH Junwei. Alloy design strategies and future trends in high-entropy alloys[J]. J. Miner. Met. Mater. Soc., 2013, 65(12):1759-1771. [2] NENE S S, FRANK M, LIU K, et al. Corrosion-resistant high entropy alloy with high strength and ductility[J]. Scripta Materialia, 2020, 166:168-172. [3] DING Qingqing, ZHANG Yin, CHEN Xiao, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574(7777):223-227. [4] HE Feng, WANG Zhijun, ZHU Man, et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures[J]. Materials & Design, 2016, 104:10-25. [5] GLUDOVATZ B, HOHENWARTER A, Catoor D, et al. A fracture-resistant high entropy alloy for cryogenic applications[J]. Science, 2014, 345:1153-1158. [6] CHATURVEDI M C, CHUNG D W. Yielding behavior of aγy-precipitation strengthened Co Ni Cr Nb Fe alloy[J]. Metallurgical Transactions A, 1981, 12(1):77-81. [7] ZHANG Mengdi, ZHANG Lijun, LIAW P, et al. Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys[J]. Journal of Materials Research, 2018, 33(19):3276-3286. [8] WANG Wenrui, QI Wu, XIE Lu, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12(5):694. [9] TSAU C H, YEH C Y, TSAI M C. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys[J]. Materials, 2019, 12(22):3716. [10] 沈毅鸿, 张元良, 李涛, 等. 激光熔覆中工艺参数对形成层几何特征及硬度影响分析[J]. 大连理工大学学报, 2017, 57(3):247-251. SHEN Yihong, ZHANG Yuanliang, LI Tao, et al. Analysis of influence of process parameters on geometry and hardness of cambium in laser cladding[J]. Journal of Dalian University of Technology, 2017, 57(3):247-251. [11] 徐淑文, 陈希章, 苏传出, 等. 工艺参数对激光熔覆层质量的影响[J]. 热加工工艺, 2020, 49(22):110-113. XU Shuwen, CHEN Xizhang, SU Chuanchu, et al. Influence of process parameters on quality of laser cladding layer[J]. Hot Working Technology, 2020, 49(22):110-113. [12] BISWAS K, YEH J W, Bhattacharjee P P, et al. High entropy alloys:Key issues under passionate debate[J]. Scripta Materialia, 2020, 188:54-58. [13] NI Cong, SHI Yan, LIU Jia, et al. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding[J]. Optics & Laser Technology, 2018, 105:257-263. [14] JUAN Yongfei, LI Jun, JIANG Yiqing, et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings[J]. Applied Surface Science, 2018, 465(28):700-714. [15] ZHANG Yong, ZHOU Yunjun, LIN Junpin, et al. Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2008, 10(6):534-538. [16] GU Zhen, XI Shengqi, SUN Chongfeng. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings[J]. Journal of Alloys and Compounds, 2019, 819:152986. [17] LIU P C, WANG Z X, CONG J H, et al. The significance of Nb interface segregation in governing pearlitic refinement in high carbon steels[J]. Materials Letters, 2020, 279:128520. [18] 彭振, 杜文栋, 刘宁, 等. 激光熔覆FeCoCrCuNiMoVSiB高熵合金熔覆层的制备和性能研究[J]. 江苏科技大学学报, 2017(1):35-39. PENG Zhen, DU Wendong, LIU Ning, et al. Properties of the FeCoCrCuNiMoVSiB high entropy alloy coating prepared by laser cladding[J]. Journal of Jiangsu University of Science and Technology, 2017(1):35-39. [19] XU Lifen, Wang Dongsheng. Grain growth characteristics of plasma-sprayed nanostructured Al2O3-13wt%TiO2 coatings during laser remelting[J]. Ceramics International, 2021:1-7. [20] 许明三, 李剑峰, 李驊登, 等. 激光熔覆粉料和工艺参数对45钢基体与熔覆层结合强度的影响研究[J]. 机械工程学报, 2017, 53(9):209-216. XU Mingsan, LI Jianfeng, LI Huadeng, et al. Influence on powders and process parameters on bonding shear strength in laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(9):209-216. [21] 付立铭, 单爱党, 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J].金属学报, 2010, 46(7):832-837. FU Liming, SHAN Aidang, WANG Wei. Effect of Nb solute dragging and precipitated phase Nb napping on recrystallized grain growth in low carbon Nb microalloyed steels[J]. Acta Metallurgica Sinica, 2010, 46(7):832-837. [22] WANG H H, WANG J, TONG Z, et al. Characterization of Nb interface segregation during welding thermal cycle in microalloyed steel by atom probe tomography[J]. Metallurgical and Materials Transactions A, 2018, 49:6224-6230. [23] DONG Wang, ZHAO Haixing, HUANG Wang, et al. Failure mechanism of a stellite coating on heat-resistant steel[J]. Metallurgical & Materials Transactions A, 2017, 48(9):1-9. [24] 陈卫祥, 甘海洋, 涂江平, 等. Ni-P-纳米碳管化学复合镀层的摩擦磨损特性[J]. 摩擦学学报, 2002, 22(4):241-244. CHEN Weixiang, GAN Haiyang, TU Jiangping, et al. Friction and wear behavior of Ni-P-Carbon nanotubes electroless composite coating[J]. Tribology, 2002, 22(4):241-244. [25] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8):981-989. [26] MAZAHERI Y, JALILVAND M M, HEIDARPOUR A, et al. Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing[J]. Tribology International, 2019, 143:106062. [27] LI Yuxin, SU Keqiang, BAI Peikang, et al. Microstructure and property characterization of Ti/TiBCN reinforced Ti based composite coatings fabricated by laser cladding with different scanning speed[J]. Materials Characterization, 2020, 159:110023. [28] TAYLOR C D, LU P, SAAL J, et al. Integrated computational materials engineering of corrosion resistant alloys[J]. npj Materials Degradation, 2018, 2(1):6. |