• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 76-85.doi: 10.3901/JME.2024.10.076

• 智能感知与行为预测 • 上一篇    下一篇

扫码分享

考虑车-路交互作用的车辆轨迹预测算法研究

李玖法1, 邹博文1,2, 任玥3   

  1. 1. 西南大学人工智能学院 重庆 400715;
    2. 中国汽车工程研究院股份有限公司 重庆 401122;
    3. 西南大学工程技术学院 重庆 400715
  • 收稿日期:2023-07-20 修回日期:2023-12-25 出版日期:2024-05-20 发布日期:2024-07-24
  • 作者简介:李玖法,男,1998年出生。主要研究方向为车辆轨迹预测和意图识别。
    E-mail:ljffuture@163.com
    任玥(通信作者),男,1990年出生,博士,讲师。主要研究方向为智能网联汽车决策与规划,路径跟踪控制与底盘集成控制。
    E-mail:yueren@swu.edu.cn
  • 基金资助:
    重庆市技术创新与应用发展专项重点(CSTB2022TIAD-KPX0038)、重庆市自然科学基金面上(cstc2020jcyj-msxmX0496)和汽车主动安全测试技术重庆市工业和信息化重点实验室开放课题(22AKC03)资助项目。

Research on Vehicle Trajectory Prediction Considering Vehicle-lane Interaction

LI Jiufa1, ZOU Bowen1,2, REN Yue3   

  1. 1. College of Artificial Intelligence, Southwest University, Chongqing 400715;
    2. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122;
    3. College of Engineering and Technology, Southwest University, Chongqing 400715
  • Received:2023-07-20 Revised:2023-12-25 Online:2024-05-20 Published:2024-07-24

摘要: 准确预测动态障碍轨迹是自动驾驶车辆正确决策和精准控制的关键。考虑复杂环境中车辆运动状态受车道信息和周围车辆共同影响,基于编-解码框架,提出一种聚合车辆-车道信息的车辆轨迹预测模型。首先采用有向图表征地图车道节点,然后通过门控循环单元(Gated recurrent unit, GRU)对目标车辆和周围障碍进行融合编码,同时引入人工势场模型,表征车-车相对交互作用。再将车道节点向量和斥力向量融合,并采用注意力机制进一步挖掘编码向量时空耦合机制。最后通过策略网络对车道节点进行评分和聚类,实现障碍物多模态轨迹预测。基于nuScene轨迹预测数据集进行训练和评估,测试结果表明,相较于现有基线模型,提出的预测模型具有更低的预测误差和更好的鲁棒性。另外,将斥力场引入注意力机制使得该模型具有更好的可解释性。

关键词: 轨迹预测, 深度学习, 编码-解码框架, 人工势场, 注意力机制

Abstract: Accurate obstacle trajectory prediction is a key to correct decision making and precise control of autonomous vehicle. Considering the influence of lane information and surrounding obstacles on vehicle motion in complex environment, a vehicle trajectory prediction model aggregated vehicle-lane information is proposed based on encoding-decoding framework. Firstly, the directed graph is adopted to describe the lane nodes. Then the target vehicle and surrounding obstacles are encoded via GRU. Simultaneously, the artificial potential field is introduced to represent the vehicle-vehicle interaction. By concatenating the lane node vector and repulsive force vector, the attention mechanism is utilized to explore the spatial-temporal coupling mechanism. Finally, the multi-modal trajectory prediction of obstacles is achieved by scoring and clustering the lane nodes through the strategy network. The proposed prediction model is trained on the nuScenes motion prediction dataset and evaluated with the state-of-the-art baseline models’ performance. The results demonstrated that the proposed prediction model has lower prediction error and better robustness. On the other hand, it has better interpretability by introducing the potential field into attention mechanism.

Key words: trajectory prediction, deep learning, encoding-decoding framework, potential field, attention mechanism

中图分类号: