• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 289-301.doi: 10.3901/JME.2024.10.289

• 智能决策规划 • 上一篇    下一篇

扫码分享

基于前车轨迹预测的智能车辆高速主动避撞方法

赵林峰1, 丰肖1, 方婷1, 王宁1, 陈无畏1, 王慧然2,3   

  1. 1. 合肥工业大学汽车与交通工程学院 合肥 230009;
    2. 合肥大学先进制造工程学院 合肥 230601;
    3. 安徽省智能车辆控制与集成设计技术工程研究中心 合肥 230601
  • 收稿日期:2023-08-20 修回日期:2023-11-20 出版日期:2024-05-20 发布日期:2024-07-24
  • 作者简介:赵林峰,男,1979年出生,博士,副教授。主要研究方向为汽车动力学与控制技术。
    E-mail:zhao.lin.feng@163.com
    陈无畏(通信作者),男,1951年出生,博士。主要研究方向为汽车动力学与控制技术。
    E-mail:hfgdcjs@126.com
  • 基金资助:
    国家自然科学基金(U22A2046,52275100)、合肥市自然科学基金(202325)和安徽省重点研究与开发计划(202304a05020018)资助项目。

Active Collision Avoidance Method of Intelligent Vehicles Based on the Trajectory Prediction of Front Vehicles in High-speed Scene

ZHAO Linfeng1, FENG Xiao1, FANG Ting1, WANG Ning1, CHEN Wuwei1, WANG Huiran2,3   

  1. 1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009;
    2. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601;
    3. Anhui Provincial Engineering Technology Research Center of Intelligent Vehicle Control and Integrated Design Technology, Hefei 230601
  • Received:2023-08-20 Revised:2023-11-20 Online:2024-05-20 Published:2024-07-24

摘要: 对于智能车辆高速主动避撞,目前的研究大多没有着重考虑车辆动力学模型,这直接限制了避撞算法在实际应用的安全性。为此基于前方相邻车辆的预测轨迹和自车动力学稳定性,提出一种基于前车轨迹预测的智能车辆高速主动避撞改进方法。基于下一代交通仿真(Next generation simulation,NGSIM)数据集进行数据处理与特征提取;搭建长短期记忆循环神经网络(Long short-term memory-recurrent neural network,LSTM-RNN)预测模型并进行训练、预测和验证,得到前车多时域预测轨迹;根据前车预测轨迹和自车动力学稳定性,设计合理的主动换道避撞策略。基于优劣解距离(Technique for order preference by similarity to ideal solution,TOPSIS)算法规划出具备安全性的主动避撞路径;搭建Prescan-Simulink-Carsim硬件在环试验平台,对提出的主动避撞方法进行试验验证,结果表明该方法可有效解决高速场景下的避撞安全性问题。

关键词: 智能车辆, 高速主动避撞, 轨迹预测, 动力学稳定性, 硬件在环

Abstract: For the intelligent vehicle active collision avoidance at high speed, most of the current studies do not focus on the vehicle dynamics model, which directly limits the safety of the collision avoidance algorithm in practical application. Therefore, an improved method for intelligent vehicle high-speed active collision avoidance based on the predicted trajectory of adjacent vehicles in front and the stability of self vehicle dynamics is proposed. Data processing and feature extraction are carried out based on the Next generation simulation(NGSIM) data set. The prediction model of the Long short-term memory-recurrent neural network(LSTM-RNN) has been established and trained, prediction and validation have been carried out to obtain the multi-time domain prediction track of the preceding vehicle. According to the predicted trajectory and the dynamic stability of the preceding vehicle, a reasonable method of active lane changing and obstacle avoidance is designed. Based on Technique for order preference by similarity to ideal solution (TOPSIS) algorithm, an active collision avoidance path with safety is planned. The Prescan-Simulink-Carsim hardware-in-the-loop test platform is built to verify the proposed active collision avoidance method, and the results show that the proposed method can effectively solve the problem of collision avoidance safety in high-speed scenarios.

Key words: intelligent vehicles, collision avoidance in high-speed scene, trajectory prediction, dynamic stability, hardware- in-the-loop

中图分类号: