• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (9): 189-205.doi: 10.3901/JME.2024.09.189

• 激光辅助加工 • 上一篇    下一篇

扫码分享

C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究

李继成1,2, 陈广俊1,2, 许金凯1,2, 于化东1,3   

  1. 1. 长春理工大学跨尺度微纳制造教育部重点实验室 长春 130022;
    2. 长春理工大学机电工程学院 长春 130022;
    3. 吉林大学机械与航空航天工程学院 长春 130025
  • 收稿日期:2023-10-09 修回日期:2024-01-18 出版日期:2024-05-05 发布日期:2024-06-18
  • 作者简介:李继成,男, 1997 年出生。主要研究方向为陶瓷基复合材料微切削加工技术。E-mail: chengya09100713@163.com;陈广俊,男, 1992 年出生,博士,助理研究员。主要研究方向为跨尺度微纳机械制造技术。E-mail: cgjand@126.com;许金凯(通信作者),男, 1978 年出生,博士,教授,博士研究生导师。主要研究方向为跨尺度微纳机械制造技术、功能表面微纳制造技术、跨尺度微纳特种加工技术。E-mail: xujinkai2000@163.com;于化东,男, 1961 年出生,博士,教授,博士研究生导师,主要研究方向为精密超精密加工、微细切削加工与微机械制造、高速切削加工技术。E-mail: yuhd@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(U19A20103)和吉林省重大科技专项(20230301005GX)资助项目。

Study on Material Damage Mechanism and Surface Quality of C/SiC Composites by Laser-ultrasonic Hybrid Micromachining

LI Jicheng1,2, CHEN Guangjun1,2, XU Jinkai1,2, YU Huadong1,3   

  1. 1. Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022;
    2. School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022;
    3. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025
  • Received:2023-10-09 Revised:2024-01-18 Online:2024-05-05 Published:2024-06-18

摘要: C/SiC复合材料具有高比强度、低密度、低热膨胀系数、耐磨损、耐高温等优异的机械与力学性能,广泛应用于航空航天、国防、电子等领域。但因其特殊的组织结构与材料特性,在加工中极易产生纤维拔出、剥落、微裂纹扩展、破碎等损伤或缺陷,直接导致加工难度大、刀具磨损快、加工精度低、表面质量差,严重制约了高端装备的性能。开展C/SiC复合材料激光超声复合微切削(L-UHM)材料损伤机理与表面质量研究,分析激光超声双能场作用下C/SiC复合材料的失效机制。基于正交切削模型建立常规加工(CM)、激光辅助加工(LAM)和L-UHM微观切削模型,揭示CM、LAM和L-UHM中三种典型纤维方向下纤维相与SiC基体相的去除机制,评价不同纤维方向下微观形貌和表面粗糙度。结果表明,激光超声复合微切削可显著降低纤维断裂能,抑制纤维弯曲,缩小SiC基体破碎面积,大幅提升加工表面质量。相比CM和LAM,L-UHM可明显抑制纤维开裂、基体破碎及基体裂纹扩展,纤维断口更加平整规则。此外,在L-UHM中顺纤维方向表面质量较LAM提高了10.1%,证明了理论分析的正确性。

关键词: C/SiC复合材料, 激光超声复合微切削, 损伤机理, 表面质量

Abstract: C/SiC composites have excellent mechanical and mechanical properties such as high specific strength, low density, low thermal expansion coefficient, wear resistance, high temperature resistance, etc., and are widely used in aerospace, national defense, electronics and other fields. However, due to its special organizational structure and material characteristics, it is easy to produce damage or defects such as fiber pulling out, micro-crack expansion, and crushing during processing, which directly leads to fast tool wear, low processing accuracy, and poor surface quality, and seriously restricts the performance of high-end equipment. The damage mechanism and surface quality of C/SiC composites in laser-ultrasonic hybrid micromachining (L-UHM) are studied. The failure mechanism of C/SiC composites under laser ultrasound is analyzed, and Conventional machining (CM), laser assisted machining (LAM) and L-UHM micro-cutting models are established based on the orthogonal cutting model. The removal mechanism of fiber phase and SiC matrix phase under three typical fiber directions in CM, LAM and L-UHM is revealed, and the micro-morphology and surface roughness under different fiber directions are evaluated. The results show that the surface quality along the fiber direction in L-UHM is 10.1% higher than that in LAM, which proves the correctness of the theoretical analysis.

Key words: C/SiC composite, laser-ultrasonic hybrid micromachining, damage mechanism, surface quality

中图分类号: