机械工程学报 ›› 2024, Vol. 60 ›› Issue (4): 259-283.doi: 10.3901/JME.2024.04.259
张越1,2, 卢岩1, 彭锐涛1,2, 朱琳伟1, 雷贝1, 蒋家传1
收稿日期:
2023-07-09
修回日期:
2023-10-31
发布日期:
2024-05-25
通讯作者:
彭锐涛,男,1982年出生,教授,博士研究生导师。主要研究方向为高效精密加工与传动。E-mail:pengruitao@163.com
作者简介:
张越,女,1990年出生,博士,副教授,硕士研究生导师。主要研究方向为薄板材料连接新技术。E-mail:zhangyuely@126.com;卢岩,男,1997年出生,硕士。主要研究方向为薄板材料连接新技术。E-mail:luyan1139802477@163.com;朱琳伟,男,1998年出生,硕士。主要研究方向为薄板材料连接新技术。E-mail:zhu1393351625@163.com;雷贝,男,1998年出生,硕士。主要研究方向为薄板材料连接新技术。E-mail:l2803873593@163.com;蒋家传,男,1997年出生,硕士。主要研究方向为薄板材料连接新技术。E-mail:jiang957290209@163.com
基金资助:
ZHANG Yue1,2, LU Yan1, PENG Ruitao1,2, ZHU Linwei1, LEI Bei1, JIANG Jiachuan1
Received:
2023-07-09
Revised:
2023-10-31
Published:
2024-05-25
摘要: 随着全球汽车产业低碳化转型,与车身轻量化相关的连接技术挑战不断增加,综合考虑轻量化的成本与效果,合理选用车身材料,搭配不同连接工艺,在满足行业质量标准降低产品重量的前提下为产品设计提供更多思路,已经成为轻量化技术发展的必然趋势。合理运用各类轻量化材料,可以有效减轻车身重量、提高车身性能,对不同的车身轻量化材料的若干新型连接工艺的研究进展进行系统归纳,从冶金连接技术、机械连接技术、粘接技术及复合连接技术四个方面进行综述分析,阐述近年来各种新型工艺及其延伸工艺的研究进展,重点分析各类工艺的技术原理、连接强度准则、工艺优势、局限性及应用现状,以期为汽车轻量化材料新型连接工艺的设计与制造提供有益借鉴,为车身轻量化连接工艺保驾护航。
中图分类号:
张越, 卢岩, 彭锐涛, 朱琳伟, 雷贝, 蒋家传. 轻量化材料新型连接工艺与应用现状[J]. 机械工程学报, 2024, 60(4): 259-283.
ZHANG Yue, LU Yan, PENG Ruitao, ZHU Linwei, LEI Bei, JIANG Jiachuan. New Connection Technology and Application Status of Lightweight Materials[J]. Journal of Mechanical Engineering, 2024, 60(4): 259-283.
[1] 李永兵,马运五,楼铭,等.轻量化薄壁结构点连接技术研究进展[J].机械工程学报,2020,56(6):125-146. LI Yongbing,MA Yunwu,LOU Ming,et al. Research progress of point connection technology for lightweight thin-walled structures[J]. Mechanical Engineering Journal,2020,56(6):125-146. [2] TAUB A I,LUO A A. Advanced lightweight materials and manufacturing processes for automotive applications[J]. MRS Bulletin,2015,40(12):1045-1054. [3] DU J,OUYANG M,CHEN J. Prospects for Chinese electric vehicle technologies in 2016-2020:Ambition and rationality[J]. Energy,2017,120:584-596. [4] FADZIL M,ABDULLAH A B,SAMAD Z,et al. Application of lightweight materials toward design for sustainability in automotive component development[M]//Design for Sustainability. Elsevier,2021:435-463. [5] DHINGRA R,DAS S. Life cycle energy and environmental evaluation of downsized vs. lightweight material automotive engines[J]. Journal of Cleaner Production,2014,85:347-358. [6] HIRSCH J. Recent development in aluminium for automotive applications[J]. Transactions of Nonferrous Metals Society of China,2014,24(7):1995-2002. [7] 李永兵,马运五,楼铭,等.轻量化多材料汽车车身连接技术进展[J].机械工程学报,2016,52(24):1-23. LI Yongbing,MA Yunwu,LOU Ming,et al. Progress in lightweight multi-material vehicle body connection technology[J]. Journal of Mechanical Engineering,2016,52(24):1-23. [8] SALAMATI M,SOLTANPOUR M,FAZLI A. Processing and tooling considerations in joining by forming technologies; part B-friction-based welding[J]. The International Journal of Advanced Manufacturing Technology,2020,106(9):4023-4081. [9] SALAMATI M,SOLTANPOUR M,FAZLI A,et al. Processing and tooling considerations in joining by forming technologies; part A-mechanical joining[J]. The International Journal of Advanced Manufacturing Technology,2019,101(1):261-315. [10] 郭磊,刘检华,张佳朋,等.航天工业中胶接技术的研究现状分析[J].中国机械工程,2021,32(12):1395-1405. GUO Lei,LIU Jianhua,ZHANG Jiapeng,et al. Research status of bonding technology in aerospace industry[J]. China Mechanical Engineering,2021,32(12):1395-1405. [11] 李永兵,李亚庭,楼铭,等.轿车车身轻量化及其对连接技术的挑战[J].机械工程学报,2012,48(18):44-54. LI Yongbing,LI Yating,LOU Ming,et al. The lightweight of car body and its challenge to connection technology[J]. Journal of Mechanical Engineering,2012,48(18):44-54. [12] 龙江启,兰凤崇,陈吉清.车身轻量化与钢铝一体化结构新技术的研究进展[J].机械工程学报,2008(6):27-35. LONG Jiangqi,LAN Fengchong,CHEN Jiqing. Research progress on new technologies of lightweight body and steel-aluminum integrated structure[J]. Journal of Mechanical Engineering,2008(6):27-35. [13] POURANVARI M,MARASHI S P H. Critical review of automotive steels spot welding:process,structure and properties[J]. Science and Technology of Welding and Joining,2013,18(5):361-403. [14] MENG X,HUANG Y,CAO J,et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science,2021,115:100706. [15] YANG J,OLIVEIRA J P,LI Y,et al. Laser techniques for dissimilar joining of aluminum alloys to steels:A critical review[J]. Journal of Materials Processing Technology,2022,301:117443. [16] ANG H Q. An overview of self-piercing riveting process with focus on joint failures,corrosion issues and optimisation techniques[J]. Chinese Journal of Mechanical Engineering,2021,34(1):2. [17] ZHANG X,CHEN C,PENG H. Recent development of clinching tools and machines[J]. The International Journal of Advanced Manufacturing Technology,2022,121:2867-2899. [18] LI L,JIANG H,ZHANG R,et al. Mechanical properties and failure behavior of flow-drilling screw-bonding joining of dissimilar aluminum alloys under dynamic tensile and fatigue loading[J]. Engineering Failure Analysis,2022,139:106479. [19] AKHAVAN-SAFAR A,RAMEZANI F,DELZENDEHROOY F,et al. A review on bi-adhesive joints:Benefits and challenges[J]. International Journal of Adhesion and Adhesives,2022,114:103098. [20] 杨炳鑫,马运五,山河,等. 2A12-T4铝合金自冲摩擦铆焊接头力学行为研究[J].航空学报,2022,43(2):126-136. YANG Bingxin,MA Yunwu,SHAN He,et al. Study on mechanical behavior of self-piercing friction riveting welded joints of 2A12-T4 aluminum alloy[J]. Journal of Aviation,2022,43(2):126-136. [21] CHOWDHURY N,CHIU W K,WANG J,et al. Static and fatigue testing thin riveted,bonded and hybrid carbon fiber double lap joints used in aircraft structures[J]. Composite Structures,2015,121:315-323. [22] BABALO V,FAZLI A,SOLTANPOUR M. Electro-hydraulic clinching:A novel high speed joining process[J]. Journal of Manufacturing Processes,2018,35:559-569. [23] PAIDAR M,VIGNESH R V,KHORRAM A,et al. Dissimilar modified friction stir clinching of AA2024-AA6061 aluminum alloys:Effects of materials positioning[J]. Journal of Materials Research and Technology,2020,9(3):6037-6047. [24] LEI L,HE X,ZHAO D,et al. Clinch-bonded hybrid joining for similar and dissimilar copper alloy,aluminium alloy and galvanised steel sheets[J]. Thin-Walled Structures,2018,131:393-403. [25] MERT Ş,ARICI A A. Design of optimal joining for friction stir spot welding of polypropylene sheets[J]. Science and Technology of Welding and Joining,2011,16(6):522-527. [26] ARAI S,KAWAHITO Y,KATAYAMA S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel[J]. Materials&Design,2014,59:448-453. [27] 李晓延,武传松,李午申.中国焊接制造领域学科发展研究[J].机械工程学报,2012,48(6):19-31. LI Xiaoyan,WU Chuansong,LI Wushen. Research on the development of welding manufacturing in China[J]. Journal of Mechanical Engineering,2012,48(6):19-31. [28] WILLIAMS N T,PARKER J D. Review of resistance spot welding of steel sheets part 1 modelling and control of weld nugget formation[J]. Metallurgical Reviews,2004,49(2):45-75. [29] KIMCHI M,PHILLIPS D H. Resistance spot welding:Fundamentals and applications for the automotive industry[J]. Synthesis Lectures on Mechanical Engineering,2017,1(2):1-115. [30] ZHANG H,SENKARA J. Resistance welding[M]. Boca Raton:CRC Press,2011. [31] ZHOU K,YAO P. Overview of recent advances of process analysis and quality control in resistance spot welding[J]. Mechanical Systems and Signal Processing,2019,124:170-198. [32] HR G A,MS A,ES A,et al. Effects of spot welded parameters on fatigue behavior of ferrite-martensite dual-phase steel andhybrid joints[J]. Engineering Failure Analysis,2022,134:106079. [33] ZHANG W H,QIU X M,SUN D Q,et al. Effects of resistance spot welding parameters on microstructures and mechanical properties of dissimilar material joints of galvanised high strength steel and aluminium alloy[J]. Science and Technology of Welding and Joining,2013,16(2):153-161. [34] ASLANLAR S,OGUR A,OZSARAC U,et al. Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding[J]. Materials&Design,2008,29(7):1427-1431. [35] KLOPCIC B,DOLINAR D,STUMBERGER G. Advanced control of a resistance spot welding system[J]. IEEE Transactions on Power Electronics,2008,23(1):144-152. [36] CHO H S,CHUN D W. A microprocessor-based electrode movement controller for spot weld quality assurance[J]. IEEE Transactions on Industrial Electronics,1985(3):234-238. [37] ZHOU L,XIA Y J,SHEN Y,et al. Comparative study on resistance and displacement based adaptive output tracking control strategies for resistance spot welding[J]. Journal of Manufacturing Processes,2021,63:98-108. [38] HU S,HASELHUHN A S,MA Y,et al. Influencing mechanism of inherent aluminum oxide film on coach peel performance of baked Al-Steel RSW[J]. Materials&Design,2021,197:109250. [39] HU S,HASELHUHN A S,MA Y,et al. Effect of external magnetic field on resistance spot welding of aluminium to steel[J]. Science and Technology of Welding and Joining,2022,27(2):84-91. [40] DENG L,LI Y,CARLSON B,et al. Effects of electrode surface topography on aluminum resistance spot welding[J]. Weld J.,2018,97(4):120-132. [41] DENG L,LI Y,CAI W,et al. Simulating thermoelectric effect and its impact on asymmetric weld nugget growth in aluminum resistance spot welding[J]. Journal of Manufacturing Science and Engineering,2020,142(9):1-24. [42] HU S,HASELHUHN A S,MA Y,et al. Comparison of the resistance spot weldability of AA5754 and AA6022 aluminum to steels[J]. Weld J.,2020,99:224-238. [43] 杨龙,杨冰,阳光武,等.点焊接头疲劳研究综述[J].机械工程学报,2020,56(14):26-43. YANG Long,YANG Bing,YANG Guangwu,et al. Summarization of fatigue research on spot welded joints[J]. Journal of Mechanical Engineering,2020,56(14):26-43. [44] ERTAS A H,YILMAZ Y,BAYKARA C. An investigation of the effect of the gap values between the overlap portions of the spot-welded pieces on fatigue life[J]. Archive Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science,2008,222(6):881-890. [45] ERTAS A H. Design optimization of spot welded structures to attain maximum strength[J]. Steel&Composite Structures,2015,19(4):995-1009. [46] 冯菲玥,陈云霞.铝/钢异种金属焊接技术的研究现状[J].焊接技术,2021,50(1):1-8. FENG Feiyue,CHEN Yunxia. Research status of aluminum/steel dissimilar metal welding technology[J]. Welding Technology,2021,50(1):1-8. [47] SIMAR A,AVETTAND-FENOEL M N. State of the art about dissimilar metal friction stir welding[J]. Science and Technology of Welding and Joining,2017,22(5):389-403. [48] 李艺君,付瑞东.钢搅拌摩擦焊接及加工研究进展[J].机械工程学报,2015,51(22):1-10. LI Yijun,FU Ruidong. Research progress in friction stir welding and processing of steel[J]. Journal of Mechanical Engineering,2015,51(22):1-10. [49] CHRISTY J V,MOURAD A H I,SHERIF M M,et al. Review of recent trends in friction stir welding process of aluminum alloys and aluminum metal matrix composites[J]. Transactions of Nonferrous Metals Society of China,2021,31(11):3281-3309. [50] GIBSON B T,LAMMLEIN D H,PRATER T J,et al. Friction stir welding:Process,automation,and control[J]. Journal of Manufacturing Processes,2014,16(1):56-73. [51] MEYSAM,HAGHSHENAS,FARZAD,et al. Dissimilar friction-stir welding of aluminum and polymer:A review[J]. International Journal of Advanced Manufacturing Technology,2019,104(1-4):333-358. [52] ZHANG X X,WU L H,ANDRAE H,et al. Effects of welding speed on the multiscale residual stresses in frictionstir welded metal matrix composites[J]. Journal of Materials Science&Technology,2019,35(5):824-832. [53] ZHANG X X,NI D R,XIAO B L,et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction[J]. Acta Materialia,2015,87:161-173. [54] GAAFER A M,MAHMOUD T S,MANSOUR E H. Microstructural and mechanical characteristics of AA7020-O Al plates joined by friction stir welding[J]. Materials Science and Engineering:A,2010,527(27-28):7424-7429. [55] DERAZKOLA H A,KHODABAKHSHI F. Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel[J]. The International Journal of Advanced Manufacturing Technology,2019,102(9-12):4383-4395. [56] EYVAZIAN A,HAMOUDA A,TARLOCHAN F,et al. Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel[J]. Journal of Materials Research and Technology,2020,9(3):3767-3781. [57] ZHAO Y,WANG Q,CHEN H,et al. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding[J]. Materials&Design (1980-2015),2014,56:725-730. [58] WANG Q,ZHAO Z,ZHAO Y,et al. The strengthening mechanism of spray forming Al-Zn-Mg-Cu alloy by underwater friction stir welding[J]. Materials&Design,2016,102:91-99. [59] LI X,ZHANG Z,PENG Y,et al. Microstructure and mechanical properties of underwater friction stir welding of CNT/Al-Cu-Mg composites[J]. Journal of Materials Research and Technology,2022,18:405-415. [60] WAHID M A,KHAN Z A,SIDDIQUEE A N. Review on underwater friction stir welding:A variant of friction stir welding with great potential of improving joint properties[J]. Transactions of Nonferrous Metals Society of China,2018,28(2):193-219. [61] MISHRA R S,DE P S,KUMAR N. Friction stir welding and processing:Science and engineering[M]. Cham:Springer,2016. [62] GIVI M,ASADI P,BAG S,et al. Advances in friction-stir welding and processing[M]. Amsterdam:Elsevier,2014. [63] 王晓南,汪杰,陈夏明,等. NiTi形状记忆合金激光焊接的研究进展[J].机械工程学报,2019,55(10):42-53. WANG Xiaonan,WANG Jie,CHEN Xiaming,et al. Research progress in laser welding of NiTi shape memory alloys[J]. Journal of Mechanical Engineering,2019,55(10):42-53. [64] 陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005. CHEN Yanbin. Modern laser welding technology[M]. Beijing:Science Press,2005. [65] KHORRAM A,GHOREISHI M. Comparative study on laser brazing and furnace brazing of Inconel 718 alloys with silver based filler metal[J]. Optics&Laser Technology,2015,68:165-174. [66] SU J,YANG J,LI Y,et al. Microstructure and mechanical properties of laser fusion welded Al/steel joints using a Zn-based filler wire[J]. Optics&Laser Technology,2020,122:105882. [67] CHLUDZINSKI M,DOS SANTOS R E,CHURIAQUE C,et al. Pulsed laser welding applied to metallic materials-A material approach[J]. Metals,2021,11(4):660. [68] 吴圣川,朱宗涛,李向伟.铝合金的激光焊接及性能评价[M].北京:国防工业出版社,2014. WU Shengchuan,ZHU Zongtao,LI Xiangwei. Laser welding and performance evaluation of aluminum alloy[M]. Beijing:Defense Industry Press,2014. [69] 李亚江,李嘉宁.激光焊接/切割/熔覆技术[M].北京:化学工业出版社,2012. LI Yajiang,LI Jianing. Laser welding/cutting/melting technology[M]. Beijing:Chemical Industry Press,2012. [70] ZHANG M,ZHANG Y,MAO C,et al. Experiments on formation mechanism of root humping in high-power laser autogenous welding of thick plates with stainless steels[J]. Optics&Laser Technology,2019,111:11-19. [71] TORKAMANY M J,TAHAMTAN S,SABBAGHZADEH J. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser[J]. Materials&Design,2010,31(1):458-465. [72] YANG J,LI Y L,ZHANG H. Microstructure and mechanical properties of pulsed laser welded Al/steel dissimilar joint[J]. Transactions of Nonferrous Metals Society of China,2016,26(4):994-1002. [73] GOLDAK J,CHAKRAVARTI A,BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B,1984,15(2):299-305. [74] TAN C,ZANG C,XIA H,et al. Influence of Al additions in Zn-based filler metals on laser welding-brazing of Al/steel[J]. Journal of Manufacturing Processes,2018,34:251-263. [75] XIAO M,GAO C,TAN C,et al. Experimental and numerical assessment of interfacial microstructure evolution in dissimilar Al/steel joint by diode laser welding-brazing[J]. Optik,2021,245:167706. [76] LI C,DING F,YU X,et al. Residual stress and welding distortion of Al/steel butt joint by arc-assisted laser welding-brazing[J]. Transactions of Nonferrous Metals Society of China,2019,29(4):692-700. [77] DAL M,FABBRO R. An overview of the state of art in laser welding simulation[J]. Optics&Laser Technology,2016,78:2-14. [78] SADEGHIAN A,IQBAL N. A review on dissimilar laser welding of steel-copper,steel-aluminum,aluminum-copper,and steel-nickel for electric vehicle battery manufacturing[J]. Optics and Laser Technology,2022,146:109595. [79] GRAUDENZ M,BAUR M. Applications of laser welding in the automotive industry[J]. Handbook of Laser Welding Technologies,2013:555-574. [80] SUN G F,WANG Z D,LU Y,et al. Underwater laser welding/cladding for high-performance repair of marine metal materials:A review[J]. Chinese Journal of Mechanical Engineering,2022,35(1):5. [81] 李德民,李占明,孙晓峰,等.低合金高强钢激光焊接的研究现状与展望[J].材料热处理学报,2020,41(11):1-10. LI Demin,LI Zhanming,SUN Xiaofeng,et al. Research status and prospect of laser welding of low alloy high strength steel[J]. Journal of Material Heat Treatment,2020,41(11):1-10. [82] SOOMRO I A,PEDAPATI S R,AWANG M. A review of advances in resistance spot welding of automotive sheet steels:Emerging methods to improve joint mechanical performance[J]. The International Journal of Advanced Manufacturing Technology,2021,118:1335-1366. [83] 解东旋,庄蔚敏,王楠,等.高强度钢板热冲压工艺与装备研究综述[J].机械工程学报,2022,58(20):319-338. XIE Dongxuan,ZHUANG Weimin,WANG Nan,et al. Review on hot stamping process and equipment of high strength steel plate[J]. Journal of Mechanical Engineering,2022,58(20):319-338. [84] GALINSKA A,GALINSKI C. Mechanical joining of fibre reinforced polymer composites to metals-A review. Part II:Riveting,clinching,non-adhesive form-locked joints,pin and loop joining[J]. Polymers,2020,12(8):1681. [85] CUI X T,ZHANG H W,WANG S X,et al. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration[J]. Materials&Design,2011,32(2):815-821. [86] 何晓聪.薄板材料连接新技术[M].北京:冶金工业出版社,2016. HE Xiaocong. New technology of thin plate material connection[M]. Beijing:Metallurgical Industry Press,2016. [87] KOCHAN,ANNA. Audi moves forward with all-aluminium cars[J]. Assembly Automation,2000,20(2):132-135. [88] 王付才,陆卫中,杨海.轻量化汽车自冲铆接接头腐蚀行为的研究进展[J].材料保护,2021,54(8):132-138. WANG Fucai,LU Weizhong,YANG Hai. Research progress on corrosion behavior of lightweight auto self-piercing riveting joints[J]. Material Protection,2021,54(8):132-138. [89] STEPHENS E V. Mechanical strength of self-piercing riveting[M]. Cambridge:Woodhead Publishing,2014. [90] MORI K. Assessing the suitability of materials for self-piercing riveting[M]. Cambridge:Woodhead Publishing,2014. [91] HOANG N H,PORCARO R,LANGSETH M,et al. Self-piercing riveting connections using aluminium rivets[J]. International Journal of Solids and Structures,2010,47(3-4):427-439. [92] XING B,TANG F,SONG C,et al. Static and fatigue behavior of self-piercing riveted joints with two overlap areas[J]. Journal of Materials Research and Technology,2021,14(5):1333-1338. [93] SUN X,KHALEEL M A. Performance optimization of self-piercing rivets through analytical rivet strength estimation[J]. Journal of Manufacturing Processes,2005,7(1):83-93. [94] CHUNG C S,KIM H K. Fatigue strength of self-piercing riveted joints in lap-shear specimens of aluminium and steel sheets[J]. Fatigue&Fracture of Engineering Materials&Structures,2016,39(9):1105-1114. [95] HUANG H,DU D,CHANG B H,et al. Distortion analysis for self-piercing riveting of aluminium alloy sheets[J]. Science and Technology of Welding and Joining,2013,12(1):73-78. [96] DENG J H,LYU F,CHEN R M,et al. Influence of die geometry on self-piercing riveting of aluminum alloy AA6061-T6 to mild steel SPFC340 sheets[J]. Advances in Manufacturing,2019,7(2):209-220. [97] 李永兵,来新民,林忠钦,等.电致塑性自冲铆接装置:ZL2010102754518[P]. 2013-02-06. LI Yongbing,LAI Xinmin,LIN Zhongqin,et al. Electroplastic self-piercing riveting device:ZL2010102754518[P]. 2013-02-06. [98] 何晓聪,卢嘉伟,丁文有.一种电液控制可调喉深自冲铆接装置:ZL2018206588025[P]. 2019-01-11. HE Xiaocong,LU Jiawei,DING Wenyou. An electro-hydraulic control adjustable throat depth self-piercing riveting device:ZL2018206588025[P]. 2019-01-11. [99] ZHANG X,HE X,XING B,et al. Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets[J]. Journal of Materials Processing Technology,2019,279:116550. [100] CACKO,ROBERT. Review of different material separation criteria in numerical modeling of the self-piercing riveting process-SPR[J]. Archives of Civil&Mechanical Engineering,2008,8(2):21-30. [101] MORTIMER J. Jaguar uses castings,extrusions to reduce parts count in new sports car[J]. Assembly Automation,2006,26(2):115-120. [102] 弗兰克·亨宁,埃尔韦拉·穆勒.轻量化手册.4,轻量化结构连接技术[M].北京:北京理工大学出版社,2015. FRANK Henning,ELVIRA Mueller. Lightweight structural connection technology[M]. Beijing:Beijing University of Technology Press,2015. [103] OUYAN X,ZHANG H, DUAN L,et al. Research on the improvement of flat-clinching jointed aluminum alloy by reshaping process[J]. The International Journal of Advanced Manufacturing Technology,2023:1-10. [104] OUYANG X, CHEN C. Research on the joining of aluminum alloy and high-strength steel by dieless clinched-adhesive processes[J]. Journal of Materials Research and Technology,2023,24:5526-5540. [105] NOURANI S A,STILWELL G,PONS D J. Shear testing of clinch joints at different temperatures:Explanation of the failure sequence[J]. Journal of Advanced Joining Processes,2023,7:100140. [106] CHEN C,ZHANG H Y,ZHAO S D,et al. Effects of sheet thickness and material on the mechanical properties of flat clinched joint[J]. Frontiers of Mechanical Engineering,2021,16(2):410-419. [107] SABRA ATIA M K,JAIN M K. Die-less clinching process and joint strength of AA7075 aluminum joints[J]. Thin-Walled Structures,2017,120:421-431. [108] GAO Y,LIU Z X,WANG P C. Effect of aging on the strength of clinching galvanized SAE1004 steel-to-aluminum AA6111 joints[J]. Journal of Manufacturing Science and Engineering,2014,136(4):041016. [109] DEAN A,ROLFES R. FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints[J]. Thin-Walled Structures,2018,133:134-140. [110] LAMBIASE F. Influence of process parameters in mechanical clinching with extensible dies[J]. The International Journal of Advanced Manufacturing Technology,2012,66(9-12):2123-2131. [111] LEE C J,LEE S H,LEE J M,et al. Design of hole-clinching process for joining CFRP and aluminum alloy sheet[J]. International Journal of Precision Engineering&Manufacturing,2014,15(6):1151-1157. [112] LEE C J,LEE J M,RYU H Y,et al. Design of hole-clinching process for joining of dissimilar materials-Al6061-T4 alloy with DP780 steel,hot-pressed 22MnB5 steel,and carbon fiber reinforced plastic[J]. Journal of Materials Processing Technology,2014,214(10):2169-2178. [113] GALIŃSKA A. Mechanical joining of fibre reinforced polymer composites to metals-A review. Part I:Bolted joining[J]. Polymers,2020,12(10):2252. [114] BOSCO A A. Flow drill screw:US9200661[P]. 2015-12-01. [115] 肖宇.铝合金汽车薄板流动钻铆连接工艺研究[D].青岛:山东科技大学,2018. XIAO Yu. Research on flow drilling and riveting connection technology of aluminum alloy automobile sheet[D]. Qingdao:Shandong University of Science and Technology,2018. [116] SØNSTABØ J K,HOLMSTRØM P H,MORIN D,et al. Macroscopic strength and failure properties of flow-drill screw connections[J]. Journal of Materials Processing Tech.,2015,222:1-12. [117] LIU W,ZHU X,ZHOU Q,et al. Modeling and simulation of the flow drill screw process of a DP590/Al6061-T6 multi-material joint used for vehicle body[J]. International Journal of Advanced Manufacturing Technology,2020(1):1-13. [118] ASLAN F,LANGLOIS L,BALAN T. Experimental analysis of the flow drill screw driving process[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5-8):2377-2388. [119] NAGEL P,MESCHUT G. Flow drill screwing of fibre-reinforced plastic-metal composites without a pilot hole[J]. Welding in the World,2017,61(5):1057-1067. [120] COSTAS M,MORIN D,KOLST J,et al. On the effect of pilot holes on the mechanical behaviour of flow-drill screw joints. Experimental tests and mesoscale numerical simulations[J]. Journal of Materials Processing Technology,2021,294:117133. [121] SONSTABO J K,MORIN D,LANGSETH M. Static and dynamic testing and modelling of aluminium joints with flow-drill screw connections[J]. International Journal of Impact Engineering,2018,115:58-75. [122] WU C T,WU Y C,LYU D,et al. The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process[J]. Computational Particle Mechanics,2020,7(2):177-191. [123] NEIL W R,JAMES H J. Drill screw:US3869219 A[P]. 1975-03-04. [124] KIM J,LEE H,CHOI H,et al. Prediction of load-displacement curves of flow drill screw and RIVTAC joints between dissimilar materials using artificial neural networks[J]. Journal of Manufacturing Processes,2020,57:400-408. [125] 肖力光,丁艳波.利用天然物质胶合技术在秸秆人造板材中的应用研究[J].中国胶粘剂,2021,30(8):66-71. XIAO Liguang,DING Yanbo.The application of natural material bonding technology in straw artificial board[J]. Chinese Adhesive,2021,30(8):66-71. [126] IHSAN A B,KAWAGUCHI Y,INOKUCHI H,et al. Structural factors of benzylated glucopyranans for shear-induced adhesion[J]. RSC Advances,2019,9(45):26214-26218. [127] MARSHALL S J,BAYNE S C,BAIER R,et al. A review of adhesion science[J]. Dental Materials,2010,26(2):e11-e16. [128] MARQUES A C,MOCANU A,TOMIC N Z,et al. Review on adhesives and surface treatments for structural applications:Recent developments on sustainability and implementation for metal and composite substrates[J]. Materials,2020,13(24):5590. [129] AHMADI Z. Nanostructured epoxy adhesives:A review[J]. Progress in Organic Coatings,2019,135:449-453. [130] ALINEJAD M,HENRY C,NIKAFSHAR S,et al. Lignin-based polyurethanes:Opportunities for bio-based foams,elastomers,coatings and adhesives[J]. Polymers,2019,11(7):1202. [131] CHATTOPADHYAY D K,RAJU K. Structural engineering of polyurethane coatings for high performance applications[J]. Progress in Polymer Science,2007,32(3):352-418. [132] SOMARATHNA H M C C,RAMAN S N,MOHOTTI D,et al. The use of polyurethane for structural and infrastructural engineering applications:A state-of-the-art review[J]. Construction and Building Materials,2018,190:995-1014. [133] BARTKOWIAK M,CZECH Z,MOZELEWSKA K,et al. Influence of thermal reactive crosslinking agents on the tack,peel adhesion,and shear strength of acrylic pressure-sensitive adhesives[J]. Polymer Testing,2020,90:106603. [134] MOINI N,KHAGHANIPOUR M,KABIRI K,et al. Engineered green adhesives based on demands:Star-shaped glycerol-lactic acid oligomers in anaerobic adhesives[J]. ACS Sustainable Chemistry&Engineering,2019,7(19):16247-16256. [135] PANG H,MA C,ZHANG S. Conversion of soybean oil extraction wastes into high-performance wood adhesives based on mussel-inspired cation-pi interactions[J]. International Journal of Biological Macromolecules,2022,209:83-92. [136] DURODOLA J F. Functionally graded adhesive joints A review and prospects[J]. International Journal of Adhesion&Adhesives,2017,76:83-89. [137] SILVA L,ROUMAGNAC P,HEUILLET P,et al. Testing adhesive joints,best practices[M]. Hoboken:John Wiley&Sons,2012. [138] MACHADO J J M,MARQUES E A S,DA SILVA L F M. Adhesives and adhesive joints under impact loadings:An overview[J]. The Journal of Adhesion,2018,94(6):421-452. [139] ZUO P,VASSILOPOULOS A P. Review of fatigue of bulk structural adhesives and thick adhesive joints[J]. International Materials Reviews,2020(2):1-26. [140] LU Y C,BROUGHTON J,WINFIELD P. A review of innovations in disbonding techniques for repair and recycling of automotive vehicles[J]. International Journal of Adhesion and Adhesives,2014,50:119-127. [141] SADOWSKI T,BALAWENDER T. Technology of clinch-adhesive joints[M]. Berlin:Springer Berlin Heidelberg,2010. [142] DA SILVA L F M,LOPES M J C Q. Joint strength optimization by the mixed-adhesive technique[J]. International Journal of Adhesion and Adhesives,2009,29(5):509-514. [143] SCHOLLERER M J,KOSMANN J,VÖLKERINK O,et al. Surface toughening-a concept to decrease stress peaks in bonded joints[J]. The Journal of Adhesion,2018,95(5-7):495-514. [144] ZHAN X,CHEN J,GU C,et al. Study on effects of pre-treatment and surface roughness on tensile-shear strength of 2060 Al-Li alloy adhesive joints[J]. The Journal of Adhesion,2017,93(8):613-625. [145] 王辉,黄开,孙展鹏,等.压力注胶对硅烷接枝Ni/CFRP粘接的影响[J].机械工程学报,2023,59(6):84-94. WANG Hui,HUANG Kai,SUN Zhanpeng,et al. Effect of pressure injection on the adhesion of silane grafted Ni/CFRP[J]. Journal of Mechanical Engineering,2023,59(6):84-94. [146] MOËS N,DOLBOW J,BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150. [147] RAMALHO L,CAMPILHO R,BELINHA J,et al. Static strength prediction of adhesive joints:A review[J]. International Journal of Adhesion and Adhesives,2019,96:102451. [148] COSTA M,VIANA G,CRÉAC'HCADEC R,et al. A cohesive zone element for mode I modelling of adhesives degraded by humidity and fatigue[J]. International Journal of Fatigue,2018,112:173-182. [149] EBADI-RAJOLI J,AKHAVAN-SAFAR A,HOSSEINI-TOUDESHKY H,et al. Progressive damage modeling of composite materials subjected to mixed mode cyclic loading using cohesive zone model[J]. Mechanics of Materials,2020,143:103322. [150] HOU W,XU X,SANG L,et al. Failure of single hat-shaped thin-walled tubular composite T-joints under impact loading[J]. Thin-Walled Structures,2020,154:106815. |
[1] | 尚耀星, 姜超凡, 于天, 李瑶, 王业硕, 焦宗夏. 碳纤维液压缸纤维增强层正向设计方法[J]. 机械工程学报, 2025, 61(2): 338-345. |
[2] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[3] | 纵怀志, 艾吉昆, 张军辉, 江磊, 谭树杰, 刘余贤, 苏琦, 徐兵. 基于拓扑优化和晶格填充的四足机器人肢腿单元轻量化设计[J]. 机械工程学报, 2024, 60(4): 420-429. |
[4] | 李潇, 史创, 闫凤霄, 郭宏伟, 李冰岩, 王浩威, 刘荣强. 空间轻质高刚度展开臂结构设计及动力学分析[J]. 机械工程学报, 2024, 60(23): 43-52. |
[5] | 陈建超, 孙志广, 刘博玮, 丁明超, 王加春, 郭保苏. 基于拓扑优化的无竖杆体面心立方点阵结构设计与试验研究[J]. 机械工程学报, 2024, 60(23): 270-277. |
[6] | 曹镜, 姚卫星, 梁德利, 王彬文. 不同温度下混合材料机械连接结构疲劳分析的SSF法[J]. 机械工程学报, 2024, 60(18): 138-145. |
[7] | 时光辉, 武文华, 陶然, 罗俊荣, 林晔, 李强, 林晓虎, 孙齐东. 增材制造技术在飞行器结构上的应用需求分析[J]. 机械工程学报, 2024, 60(11): 74-84. |
[8] | 李峥琪, 刘长钊, 宋健, 王磊. 提高年循环效率的永磁同步发电机-齿轮传动系统机电协同设计[J]. 机械工程学报, 2024, 60(1): 296-308. |
[9] | 张新彤, 张成明, 李立毅, 傅鹏睿. 电推进用高效轻质永磁同步电机的设计方法[J]. 机械工程学报, 2023, 59(8): 181-195. |
[10] | 张磊, 许帅康, 陈洁, 李鹏飞, 于世杰, 王超. 列车车体轻量化设计研究进展[J]. 机械工程学报, 2023, 59(24): 177-196. |
[11] | 刘嘉鸣, 全东, 赵国群. 航空复合材料连接成形技术研究进展[J]. 机械工程学报, 2023, 59(20): 119-142. |
[12] | 李春明, 鲍珂. 基于载荷传递路径的履带车辆多层级耦合动力学建模与分析[J]. 机械工程学报, 2023, 59(13): 157-174. |
[13] | 聂昕, 南博. 拼接铺层纤维增强复合材料连接结构设计与离散优化[J]. 机械工程学报, 2021, 57(7): 194-203. |
[14] | 孔祥东, 朱琦歆, 姚静, 尚耀星, 祝毅. “液压元件与系统轻量化设计制造新方法”基础理论与关键技术[J]. 机械工程学报, 2021, 57(24): 4-12. |
[15] | 尚耀星, 李瑶, 于天, 姜超凡, 王业硕, 杨光, 孔祥东, 焦宗夏. 轻量化复合材料液压缸现状及挑战[J]. 机械工程学报, 2021, 57(24): 13-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||