机械工程学报 ›› 2023, Vol. 59 ›› Issue (20): 119-142.doi: 10.3901/JME.2023.20.119
刘嘉鸣1,2, 全东1,2, 赵国群1,2
收稿日期:
2023-05-31
修回日期:
2023-08-11
出版日期:
2023-10-20
发布日期:
2023-12-08
通讯作者:
赵国群(通信作者),男,1962年出生,博士,教授,博士研究生导师。主要研究方向为轻质合金塑性成形理论与技术、聚合物成型理论与技术等。E-mail:zhaogq@sdu.edu.cn
作者简介:
刘嘉鸣,男,1994年出生,博士后。主要研究方向为纤维增强复合材料成形及连接技术。E-mail:liu.jm@sdu.edu.cn
基金资助:
LIU Jiaming1,2, QUAN Dong1,2, ZHAO Guoqun1,2
Received:
2023-05-31
Revised:
2023-08-11
Online:
2023-10-20
Published:
2023-12-08
摘要: 纤维增强复合材料具有高比强度、高比模量、结构性能优异以及可设计性强等优势,能够实现构件轻量化和结构-功能设计一体化,在航空航天、交通运输、能源动力以及国防科技等领域具有重要的战略地位。随着纤维增强复合材料在航空航天等领域的大量应用,复合材料之间及其与轻质合金间的高性能-高效率连接成形技术成为航空结构强度和稳定性的重要保障之一。综述纤维增强复合材料连接成形技术的最新研究进展,着重讨论复合材料间及其与轻质合金间的机械连接、胶粘剂连接以及焊接工艺。较全面地论述和分析各类复合材料连接成形的技术特征,对比总结各类连接成形技术的优缺点以及连接结构性能的提升能力,提出各类复合材料连接成形技术的未来发展和研究趋势。
中图分类号:
刘嘉鸣, 全东, 赵国群. 航空复合材料连接成形技术研究进展[J]. 机械工程学报, 2023, 59(20): 119-142.
LIU Jiaming, QUAN Dong, ZHAO Guoqun. Progress in Joint Forming Technology of Aviation Composites[J]. Journal of Mechanical Engineering, 2023, 59(20): 119-142.
[1] GENG Daxi,LIU Yihang,SHAO Zhenyu,et al. Delamination formation,evaluation and suppression during drilling of composite laminates:A review[J]. Composite Structures,2019,216:168-186. [2] LEE J M,MIN B J,PARK J H,et al. Design of lightweight CFRP automotive part as an alternative for steel part by thickness and lay-up optimization[J]. Materials,2019,12(14):2309. [3] RAJAK D K,PAGAR D D,MENEZES P L,et al. Fiber-reinforced polymer composites:Manufacturing,properties,and applications[J]. Polymers,2019,11(10):1667. [4] KELLY G,HALLSTR M S. Bearing strength of carbon fibre/epoxy laminates:Effects of bolt-hole clearance[J]. Composites Part B:Engineering,2004,35(4):331-343. [5] QUAN Dong,IVANKOVIC A. The curing behaviour and thermo-mechanical properties of core-shell rubber-modified epoxy nanocomposites[J]. Polymers and Polymer Composites,2019,27(3):168-175. [6] QUAN Dong,WANG Guilong,ZHAO Guoqun,et al. On the fracture behaviour of aerospace-grade Polyether-ether-ketone composite-to-aluminium adhesive joints[J]. Composites Communications,2022,30:101098. [7] QUAN Dong,LIU Jiaming,YAO Liaojun,et al. Interlaminar and intralaminar fracture resistance of recycled carbon fibre/PPS composites with tailored fibre/matrix adhesion[J]. Composites Science and Technology,2023,239:110051. [8] MIN Junying,HU Jiahao,SUN Chengcheng,et al. Fabrication processes of metal-fiber reinforced polymer hybrid components:A review[J]. Advanced Composites and Hybrid Materials,2022,5(2):651-678. [9] QUAN Dong,MISCHO Chiara,LI Xiping,et al. Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils[J]. Composites Science and Technology,2019,182:107775. [10] QUAN Dong,ALDERLIESTEN R,DRANSFELD C,et al. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils[J]. Composite Structures,2020,252:112699. [11] QUAN Dong,BOLOGNA F,SCARSELLI G,et al. Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils[J]. Composites Part A:Applied Science and Manufacturing,2020,128:105642. [12] QUAN Dong,BOLOGNA F,SCARSELLI G,et al. Mode-II fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Composites Science and Technology,2020,191:108065. [13] QUAN Dong,DEEGAN B,ALDERLIESTEN R,et al. The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Materials & Design,2020,192:108781. [14] QUAN Dong,MISCHO C,BINSFELD L,et al. Fracture behaviour of carbon fibre/epoxy composites interleaved by MWCNT-and graphene nanoplatelet-doped thermoplastic veils[J]. Composite Structures,2020,235:111767. [15] QUAN Dong,YUE Dongsheng,MA Yannan,et al. On the mix-mode fracture of carbon fibre/epoxy composites interleaved with various thermoplastic veils[J]. Composites Communications,2022,33:101230. [16] QUAN Dong,FLYNN S,ARTUSO M,et al. Interlaminar fracture toughness of CFRPs interleaved with stainless steel fibres[J]. Composite Structures,2019,210:49-56. [17] QUAN Dong,DEEGAN B,BINSFELD L,et al. Effect of interlaying UV-irradiated PEEK fibres on the mechanical,impact and fracture response of aerospace-grade carbon fibre/epoxy composites[J]. Composites Part B:Engineering,2020,191:107923. [18] QUAN Dong,FAROOQ U,ZHAO Guoqun,et al. Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites[J]. Materials & Design,2022,218:110671. [19] QUAN Dong,URDANIZ J L,IVANKOVIĆ A. Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes[J]. Materials & Design,2018,143:81-92. [20] QUAN Dong,MURPHY N,IVANKOVIĆ A,et al. Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Composite Structures,2022,281:114903. [21] 杨苑铎,李洋,李一昂,等. 碳纤维增强热塑性复合材料超声波焊接研究进展[J]. 机械工程学报,2022,57(22):130-156. YANG Yuanduo,LI Yang,LI Yiang,et al. Advances in ultrasonic welding of carbon fiber reinforced thermoplastic composites[J]. Journal of Mechanical Engineering,2021,57(22):130-156. [22] SUBRAMANIAN K,COOK N H. Sensing of drill wear and prediction of drill life[J]. Journal of Manufacturing Science and Engineering,1977,99(2):295. [23] KUO Chunliang,WANG Chihying,KO Shunkai. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites[J]. Wear,2018,398:1-12. [24] UHLMANN E,MULLANY B,BIERMANN D,et al. Process chains for high-precision components with micro-scale features[J]. CIRP Annals,2016,65(2):549-572. [25] STONE R,KRISHNAMURTHY K. A neural network thrust force controller to minimize delamination during drilling of graphite-epoxy laminates[J]. International Journal of Machine Tools and Manufacture,1996,36(9):985-1003. [26] PORTEMONT G,BERTHE J,DEUDON A,et al. Static and dynamic bearing failure of carbon/epoxy composite joints[J]. Composite Structures,2018,204:131-141. [27] HAUSMANN J M,HELFRICH B,MOTSCH N. Aspects of preloaded bolted joints of fiber reinforced polymers and metals[J]. Key Engineering Materials,2017,742:401-407. [28] YANG Yu,CHENG Hui,DU Kunpeng,et al. Microscale damage modeling of bolt-hole contact interface during the bolt installation process of composite structure[J]. Composite Structures,2022,291:115561. [29] NASSAR S A,VIRUPAKSHA V L,GANESHMURTHY S. Effect of bolt tightness on the behavior of composite joints[J]. Journal of Pressure Vessel Technology,Transactions of the ASME,2007,129(1):43-51. [30] XU Guanhua,ZHANG Kaifu,CHENG Hui,et al. An efficient physically-based damage model for interface damage of composites sleeved interference joint and influence analysis of its interface friction[J]. Composite Structures,2021,275:114425. [31] ZHANG Kaifu,LI Hailin,CHENG Hui,et al. Combined effects of seawater ageing and fatigue loading on the bearing performance and failure mechanism of CFRP/CFRP single-lap bolted joints[J]. Composite Structures,2020,234:111677. [32] KHAN S A,KHAN H A,AWAIS R,et al. Classification of progressive failure and mechanical behavior of dissimilar material hybrid joints at varying temperatures[J]. Thin-Walled Structures,2023,182:110212. [33] COELHO A M G,MOTTRAM J T. A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers[J]. Materials & Design,2015,74:86-107. [34] LEE C J,LEE J M,RYU H Y,et al. Design of hole-clinching process for joining of dissimilar materials–Al6061-T4 alloy with DP780 steel,hot-pressed 22MnB5 steel,and carbon fiber reinforced plastic[J]. Journal of Materials Processing Technology,2014,214(10):2169-2178. [35] LEE S H. Effect of tool shape on hole clinching for CFRP with steel and aluminum alloy sheet[C]//Key Engineering Materials. Switzerland:Trans Tech Publications,2014,476-483. [36] LAMBIASE F,DI I A. Joining Aluminum with Titanium alloy sheets by mechanical clinching[J]. Journal of Manufacturing Processes,2018,35:457-465. [37] LAMBIASE F,DURANTE M,DI I A. Fast joining of aluminum sheets with glass fiber reinforced polymer (GFRP) by mechanical clinching[J]. Journal of Materials Processing Technology,2016,236:241-251. [38] LI Dezhi,HAN Li,THORNTON M,et al. Influence of edge distance on quality and static behaviour of self-piercing riveted aluminium joints[J]. Materials & Design,2012,34:22-31. [39] VORDERBRUEGGEN J,MESCHUT G. Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain[J]. Composite Structures,2019,230:111533. [40] BORBA N Z,BLAGA L,DOS S J F,et al. Direct-friction riveting of polymer composite laminates for aircraft applications[J]. Materials Letters,2018,215:31-34. [41] MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part A:Applied Science and Manufacturing,2020,139:106128. [42] JIANG Hao,SUN Liqiang,LIANG Jusong,et al. Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading[J]. Composite Structures,2019,230:111500. [43] 程晖,樊新田,徐冠华,等. 航空复合材料结构精密干涉连接技术综述[J]. 航空学报,2021,42(10):55-73. CHENG Hui,FAN Xintian,XU Guanhu,et al. State of the art of precise interference-fit technology for composite structures in aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):55-73. [44] LIU Yang,ZHUANG Weimin,WU Shijie. Effects of hole diameter and ply angle on the mechanical behaviour of hole-clinched joints in carbon fibre reinforced polymers and aluminium alloy sheets[J]. The International Journal of Advanced Manufacturing Technology,2020,106:5345-5352. [45] LEE S H,LEE C J,LEE K H,et al. Influence of tool shape on hole clinching for carbon fiber-reinforced plastic and SPRC440[J]. Advances in Mechanical Engineering,2014,6:810864. [46] WANG Jian,YU Yue,FU Changyun,et al. Experimental investigation of clinching CFRP/aluminum alloy sheet with prepreg sandwich structure[J]. Journal of Materials Processing Technology,2020,277:116422. [47] LAMBIASE F,KO D C. Feasibility of mechanical clinching for joining aluminum AA6082-T6 and Carbon Fiber Reinforced Polymer sheets[J]. Materials & Design,2016,107:341-352. [48] WAGNER J,WILHELM M,BAIER H,et al. Experimental analysis of damage propagation in riveted CFRP-steel structures by thermal loads[J]. The International Journal of Advanced Manufacturing Technology,2014,75:1103-1113. [49] DI F G,FRATINI L,PASTA A. Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks[J]. International Journal of Adhesion and Adhesives,2013,41:24-32. [50] DI F G,FRATINI L,PASTA A,et al. On the self-piercing riveting of aluminium blanks and carbon fibre composite panels[J]. International journal of material forming,2013,6:137-144. [51] UCSNIK S,SCHEERER M,ZAREMBA S,et al. Experimental investigation of a novel hybrid metal–composite joining technology[J]. Composites Part A:Applied Science and Manufacturing,2010,41(3):369-374. [52] JIANG Hao,ZENG Chaochao,LI Guangyao,et al. Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint[J]. Composite Structures,2021,257:113162. [53] FENG Ziwei,ZHAO Hongyun,TAN Caiwang,et al. Nanosecond laser ablation for improving the strength of CFRTP and aluminum alloy adhesively bonded joints[J]. Composite Structures,2021,274:114369. [54] 汤祖阳,王亚强,董红刚. 轻质异种材料搅拌摩擦点焊技术研究进展[J]. 机械工程学报,2020,56(6):147-158. TANG Zuyang,WANG Yaqiang,DONG Honggang. Progress of the friction stir spot welding in lightweight dissimilar materials[J]. Journal of Mechanical Engineering,2020,56(6):147-158. [55] DMITRUK A,MAYER P,PACH J. Pull-off strength of thermoplastic fiber-reinforced composite coatings[J]. Journal of Adhesion Science and Technology,2018,32(9):997-1006. [56] PARK R,JANG J. The effect of surface roughness on the adhesion properties of ceramic/hybrid FRP adhesively bonded systems[J]. Journal of Adhesion Science and Technology,1998,12(7):713-729. [57] PARK S M,ROY R,KWEON J H,et al. Strength and failure modes of surface treated CFRP secondary bonded single-lap joints in static and fatigue tensile loading regimes[J]. Composites Part A:Applied Science and Manufacturing,2020,134:105897. [58] LIM S J,CHEON J,KIM M. Effect of laser surface treatments on a thermoplastic PA 6/carbon composite to enhance the bonding strength[J]. Composites Part A:Applied Science and Manufacturing,2020,137:105989. [59] QUAN Dong,ALDERLIESTEN R,DRANSFELD C,et al. Co-cure joining of epoxy composites with rapidly UV-irradiated PEEK and PPS composites to achieve high structural integrity[J]. Composite Structures,2020,251:112595. [60] QUAN Dong,ALDERLIESTEN R,DRANSFELD C,et al. Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substrates[J]. Composites Science and Technology,2020,199:108358. [61] QUAN Dong,DEEGAN B,BYRNE L,et al. Rapid surface activation of carbon fibre reinforced PEEK and PPS composites by high-power UV-irradiation for the adhesive joining of dissimilar materials[J]. Composites Part A:Applied Science and Manufacturing,2020,137:105976. [62] SCARSELLI G,QUAN Dong,MURPHY N,et al. Adhesion improvement of thermoplastics-based composites by atmospheric plasma and UV treatments[J]. Applied Composite Materials,2021,28:71-89. [63] QUAN Dong,ZHAO Guoqun,WANG Guilong,et al. The development of high performance hybrid joints between epoxy composites and PEEK/PPS composites:The mode-II and mix mode-I/II fracture behaviour[J]. Composite Structures,2022,292:115638. [64] QUAN Dong,WANG Guilong,ZHAO Guoqun,et al. On the interlayer toughening of carbon fibre/epoxy composites using surface-activated ultra-thin PEEK films[J]. Composite Structures,2023,303:116309. [65] MENNINGEN M,WEISS H. Application of fracture mechanics to the adhesion of metal coatings on CFRP[J]. Surface and Coatings Technology,1995,76:835-840. [66] ZHANG Juan,Souza M D,CREIGHTON C,et al. New approaches to bonding thermoplastic and thermoset polymer composites[J]. Composites Part A:Applied Science and Manufacturing,2020,133:105870. [67] 邹田春,刘志浩,李晔,等. 等离子体表面处理对碳纤维增强树脂基复合材料(CFRP)胶接性能及表面特性的影响[J]. 中国表面工程,2022,35(1):125-134. ZOU Tianchun,LIU Zhihao,LI Ye,et al. Effect of plasma surface treatment on bonding properties and surface properties of CFRP[J]. China Surface Engineering,2022,35(1):125-134. [68] GULTEKIN K,AKPINAR S,ÖZEL A,et al. Effects of unbalance on the adhesively bonded composites-aluminium joints[J]. The Journal of Adhesion,2017,93(9):674-687. [69] CHOWDHURY N M,WANG J,CHIU W K,et al. Experimental and finite element studies of thin bonded and hybrid carbon fibre double lap joints used in aircraft structures[J]. Composites Part B:Engineering,2016,85:233-242. [70] ZENG Qinggang,SUN C T. Novel design of a bonded lap joint[J]. AIAA Journal,2001,39(10):1991-1996. [71] DA S L F,ADAMS R. Techniques to reduce the peel stresses in adhesive joints with composites[J]. International Journal of Adhesion and Adhesives,2007,27(3):227-235. [72] CHENG Xiaoquan,BAIG Y,HU Renwei,et al. Study of tensile failure mechanisms in scarf repaired CFRP laminates[J]. International Journal of Adhesion and Adhesives,2013,41:177-185. [73] MATOUŠ K,DVORAK G J. Analysis of tongue and groove joints for thick laminates[J]. Composites Part B:Engineering,2004,35(6-8):609-617. [74] KUPSKI J,FREITAS S T D. Design of adhesively bonded lap joints with laminated CFRP adherends:Review,challenges and new opportunities for aerospace structures[J]. Composite Structures,2021,268:113923. [75] 冯闯,赵广慧. 复合材料胶接接头力学性能的研究进展[J]. 中国塑料,2021,35(11):144. FENG Chuang,ZHAO Guanghui. Research progress on mechanical properties of adhesive joints in composite materials[J]. China Plastics,2021,35(11):144-160. [76] QUAN Dong,IVANKOVIC A. Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer[J]. Polymer,2015,66:16-28. [77] QUAN Dong,MURPHY N,IVANKOVIC A. Fracture behaviour of epoxy adhesive joints modified with core-shell rubber nanoparticles[J]. Engineering Fracture Mechanics,2017,182:566-576. [78] QUAN Dong,MURPHY N,IVANKOVIC A. Fracture behaviour of a rubber nano-modified structural epoxy adhesive:Bond gap effects and fracture damage zone[J]. International Journal of Adhesion and Adhesives,2017,77:138-150. [79] QUAN Dong,CARDIFF P,MURPHY N,et al. Damage behaviour of nano-modified epoxy adhesives subject to high stress constraint[J]. The Journal of Adhesion,2018,94(5):387-405. [80] QUAN Dong,MURPHY N,CARDIFF P,et al. The intrinsic fracture property of a rubber-modified epoxy adhesive:Geometrical transferability[J]. Engineering Fracture Mechanics,2018,203:240-249. [81] QUAN Dong,PEARSON R A,IVANKOVIC A. Interaction of toughening mechanisms in ternary nanocomposites[J]. Polymer Composites,2018,39(10):3482-3496. [82] QUAN Dong,CAROLAN D,ROUGE C,et al. Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles[J]. International Journal of Adhesion and Adhesives,2018,81:21-29. [83] QUAN Dong,CAROLAN D,ROUGE C,et al. Carbon nanotubes and core-shell rubber nanoparticles modified structural epoxy adhesives[J]. Journal of Materials Science,2017,52:4493-4508. [84] QUAN Dong,MOLONEY P,CAROLAN D,et al. Synergistic toughening and electrical functionalization of an epoxy using MWCNTs and silane‐/plasma‐activated basalt fibers[J]. Journal of Applied Polymer Science,2021,138(1):49605. [85] QUAN Dong,URD N J L,ROUGE C,et al. The enhancement of adhesively-bonded aerospace-grade composite joints using steel fibres[J]. Composite Structures,2018,198:11-18. [86] TAO Ran,LI Xiaole,YUDHANTO A,et al. Toughening adhesive joints through crack path engineering using integrated polyamide wires[J]. Composites Part A:Applied Science and Manufacturing,2022,158:106954. [87] LIU Jinsong,LI Yibo,HUANG Minghui,et al. The effect of transverse low-velocity pre-impact on the residual strength of Al/PEEK/CFRTP adhesive joints[J]. International Journal of Impact Engineering,2022,168:104295. [88] ARGOUD N,ROUSSEAU J,PIEZEL B,et al. Multi-axial testing of thick adhesive bonded joints of fibre reinforced thermoplastic polymers[J]. International Journal of Adhesion and Adhesives,2018,84:37-47. [89] QUAN Dong,FAROOQ U,ZHAO Guoqun,et al. Co-cured carbon fibre/epoxy composite joints by advanced thermoplastic films with excellent structural integrity and thermal resistance[J]. International Journal of Adhesion and Adhesives,2022,118:103247. [90] LIU Jiaming,LIU Jia,YUE Dongsheng,et al. The mix-mode fracture behaviour of aerospace composite joints co-cured by different forms of advanced thermoplastics[J]. Composites Communications,2023,38:101519. [91] QUAN Dong,MA Yannan,YUE Dongsheng,et al. On the application of strong thermoplastic–thermoset interactions for developing advanced aerospace-composite joints[J]. Thin-Walled Structures,2023,186:110671. [92] SALOM O G R,GOJZEWSKI H,ERARTSIN O,et al. Novel co-bonded thermoplastic elastomer-epoxy/glass hybrid composites:The effect of cure temperature on the interphase morphology[J]. Polymer Testing,2022,115:107736. [93] van den AKKER B P H,DONADON M V,LOENDERSLOOT R,et al. The influence of hygrothermal aging on the fatigue behavior and residual strength of post-buckled co-bonded stiffened panels subjected to compressive loading[J]. Composites Part B:Engineering,2020,194:108023. [94] GOLEWSKI P,SADOWSKI T. Investigation of the effect of chamfer size on the behaviour of hybrid joints made by adhesive bonding and riveting[J]. International Journal of Adhesion and Adhesives,2017,77:174-182. [95] CUI Junjia,GAO Song,JIANG Hao,et al. Adhesive bond-electromagnetic rivet hybrid joining technique for CFRP/Al structure:Process,design and property[J]. Composite Structures,2020,244:112316. [96] MARIAM M,AFENDI M,MAJID M S A,et al. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fibre reinforced composites fabricated with different joining methods[J]. Composite Structures,2018,200:647-658. [97] PIZZORNI M,PARMIGGIANI A,PRATO M. Adhesive bonding of a mixed short and continuous carbon-fiber-reinforced Nylon-6 composite made via fused filament fabrication[J]. International Journal of Adhesion and Adhesives,2021,107:102856. [98] LOUTAS T,TSOKANAS P,KOSTOPOULOS V,et al. Mode I fracture toughness of asymmetric metal-composite adhesive joints[J]. Materials Today:Proceedings,2021,34:250-259. [99] KARAKAYA N,PAPILA M,ÖZKO G. Effects of hot melt adhesives on the interfacial properties of overmolded hybrid structures of polyamide-6 on continuous carbon fiber/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2020,139:106106. [100] 田亚南. 环氧基复合材料共固化胶接的界面结构及其性能研究[D]. 哈尔滨:黑龙江省科学院石油化学研究院,2022. TIAN Yanan. Structure and properties of the co-curing bonding interface of epoxy-matrix composites[D]. Harbin:Institute of Petrochemistry Heilongjiang Academy of Sciences,2022. [101] QUAN Dong,ZHAO Guoqun,SCARSELLI G,et al. Co-curing bonding of carbon fibre/epoxy composite joints with excellent structure integrity using carbon fibre/PEEK tapes[J]. Composites Science and Technology,2022,227:109567. [102] LEONE C,GENNA S. Effects of surface laser treatment on direct co-bonding strength of CFRP laminates[J]. Composite Structures,2018,194:240-251. [103] JIANG Qingbin,WANG Xiaolin,YAN Jiuchun. Welding of thermoplastic composites[J]. Materials Science and Technology,2005,13(3):247-250. [104] 王家锋,苏佳煜,朱姝,等. 基于导热板的碳纤维增强聚醚醚酮复合材料感应焊接温度调控[J]. 复合材料学报,2021,38(8):2625-2634. WANG Jiafeng,SU Jiayu,ZHU Shu,et al. Temperature control for induction welding of carbon fiber reinforced polyetheretherketone (CF/PEEK) composite material via thermal conduction plate[J]. Acta Materiae Compositae Sinica,2021,38(8):2625-2634. [105] 韩志勇,陈栋,路鹏程. 碳纤维增强聚苯硫醚复合材料感应焊接研究[J]. 塑料工业,2019,47(11):134-140. HAN Zhiyong,CHEN Dong,LU Pengcheng. Study on induction welding of carbon fiber reinforced polyphenylenesulfide composites[J]. China Plastics Industry,2019,47(11):134-140. [106] SHI Huajie,VILLEGAS I F,BERSEE H E. Analysis of void formation in thermoplastic composites during resistance welding[J]. Journal of Thermoplastic Composite Materials,2017,30(12):1654-1674. [107] VILLEGAS I F,BERSEE H E. Characterisation of a metal mesh heating element for closed-loop resistance welding of thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,2015,28(1):46-65. [108] ZWEIFEL L,BRAUNER C. Investigation of the interphase mechanisms and welding behaviour of fast-curing epoxy based composites with co-cured thermoplastic boundary layers[J]. Composites Part A:Applied Science and Manufacturing,2020,139:106120. [109] DEVINE J. Ultrasonic plastics welding basics[J]. Welding Journal,2001,80(1):29-33. [110] VILLEGAS I F. In situ monitoring of ultrasonic welding of thermoplastic composites through power and displacement data[J]. Journal of Thermoplastic Composite Materials,2015,28(1):66-85. [111] TUTUNJIAN S,EROGLU O,DANNEMANN M,et al. A numerical analysis of an energy directing method through friction heating during the ultrasonic welding of thermoplastic composites[J]. Journal of Thermoplastic Composite Materials,2020,33(11):1569-1587. [112] ZHANG Zongbo,WANG Xiaodong,LUO Yi,et al. Study on heating process of ultrasonic welding for thermoplastics[J]. Journal of Thermoplastic Composite Materials,2010,23(5):647-664. [113] PALARDY G. Smart ultrasonic welding of thermoplastic composites[C/CD]//Proceedings of the American Society for Composites-31st Technical Conference. Williamsburg:ASC,2016. [114] ZHAO Tian,BROEK C,PALARDY G,et al. Towards robust sequential ultrasonic spot welding of thermoplastic composites:Welding process control strategy for consistent weld quality[J]. Composites Part A:Applied Science and Manufacturing,2018,109:355-367. [115] VILLEGAS I F. Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters[J]. Composites Part A:Applied Science and Manufacturing,2014,65:27-37. [116] JONGBLOED B. Improving weld uniformity in continuous ultrasonic welding of thermoplastic composites[C/CD]//Proceedings of the 18th European Conference on Composite Materials. Athens:Proceedings of the European Conference on Composite Materials-ECCM,June24-28,2018. [117] TAKEDA S I,TANKS J D,SUGIMOTO S,et al. Application of sheet-like energy directors to ultrasonic welding of carbon fibre-reinforced thermoplastics[J]. Advanced Composite Materials,2021,30(2):192-204. [118] YANG Yuanduo,LI Yang,LIU Zeguang,et al. Ultrasonic welding of short carbon fiber reinforced PEEK with spherical surface anvils[J]. Composites Part B:Engineering,2022,231:109599. [119] FERNANDEZ V I,VALLE G B,BERSEE H E N,et al. A comparative evaluation between flat and traditional energy directors for ultrasonic welding of CF/PPS thermoplastic composites[J]. Composite Interfaces,2015,22(8):717-729. [120] SENDERS F,VAN B M,PALARDY G,et al. Zero-flow:A novel approach to continuous ultrasonic welding of CF/PPS thermoplastic composite plates[J]. Advanced Manufacturing:Polymer & Composites Science,2016,2(3-4):83-92. [121] VILLEGAS I F,PALARDY G. Ultrasonic welding of CF/PPS composites with integrated triangular energy directors:melting,flow and weld strength development[J]. Composite Interfaces,2017,24(5):515-528. [122] PALARDY G,VILLEGAS I F. On the effect of flat energy directors thickness on heat generation during ultrasonic welding of thermoplastic composites[J]. Composite Interfaces,2017,24(2):203-214. [123] TAO Wang,SU Xuan,WANG Haohan,et al. Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding[J]. Journal of Manufacturing Processes,2019,37:196-202. [124] BHUDOLIA S K,GOHEL G,FAI L K,et al. Fatigue response of ultrasonically welded carbon/Elium® thermoplastic composites[J]. Materials Letters,2020,264:127362. [125] KÖHLER F,VILLEGAS I,DRANSFELD C,et al. Static ultrasonic welding of carbon fibre unidirectional thermoplastic materials and the influence of heat generation and heat transfer[J]. Journal of Composite Materials,2021,55(15):2087-2102. [126] VILLEGAS I F,VAN M R. Ultrasonic welding of carbon/epoxy and carbon/PEEK composites through a PEI thermoplastic coupling layer[J]. Composites Part A:Applied Science and Manufacturing,2018,109:75-83. [127] TSIANGOU E,KUPSKI J,DE F S T,et al. On the sensitivity of ultrasonic welding of epoxy-to polyetheretherketone (PEEK)-based composites to the heating time during the welding process[J]. Composites Part A:Applied Science and Manufacturing,2021,144:106334. [128] GOHEL G,SOH C Z,LEONG K F,et al. Effect of PMMA coupling layer in enhancing the ultrasonic weld strength of novel room temperature curable acrylic thermoplastic to epoxy based composites[J]. Polymers,2022,14(9):1862. [129] TSIANGOU E,FREITAS S T D,BENEDICTUS R,et al. On the sensitivity of the ultrasonic welding process of epoxy-to polyetheretherketone (PEEK)-based composites to the welding force and amplitude of vibrations[J]. Composites Part C:Open Access,2021,5:100141. [130] TSIANGOU E,TEIXEIRA D F S,VILLEGAS I F,et al. Ultrasonic welding of epoxy-to polyetheretherketone-based composites:Investigation on the material of the energy director and the thickness of the coupling layer[J]. Journal of Composite Materials,2020,54(22):3081-3098. [131] TSIANGOU E,FREITAS S T D,VILLEGAS I F,et al. Investigation on energy director-less ultrasonic welding of polyetherimide (PEI)-to epoxy-based composites[J]. Composites Part B:Engineering,2019,173:107014. [132] TSIANGOU E,TEIXEIRA D F S,VILLEGAS I,et al. Ultrasonic welding of CF/Epoxy to CF/PEEK composites:Effect of the energy director material on the welding process[C]//Proceedings of the 18th European Conference on Composite Materials. Athens:Proceedings of the European Conference on Composite Materials-ECCM,June24-28,2018. [133] VILLEGAS I F,RUBIO P V. High-temperature hybrid welding of thermoplastic (CF/Peek) to thermoset (CF/Epoxy) composites[C]//20th International Conference on Composite Materials,Copenhagen,Denmark,2015:19-24. [134] LIONETTO F,BALLE F,MAFFEZZOLI A. Hybrid ultrasonic spot welding of aluminum to carbon fiber reinforced epoxy composites[J]. Journal of Materials Processing Technology,2017,247:289-295. [135] BALLE F,WAGNER G,EIFLER D. Ultrasonic metal welding of aluminium sheets to carbon fibre reinforced thermoplastic composites[J]. Advanced Engineering Materials,2009,11(1-2):35-39. [136] WAGNER G,BALLE F,EIFLER D. Ultrasonic welding of aluminum alloys to fiber reinforced polymers[J]. Advanced Engineering Materials,2013,15(9):792-803. [137] LIONETTO F,MELE C,LEO P,et al. Ultrasonic spot welding of carbon fiber reinforced epoxy composites to aluminum:Mechanical and electrochemical characterization[J]. Composites Part B:Engineering,2018,144:134-142. [138] STAAB F,BALLE F. Ultrasonic torsion welding of ageing-resistant Al/CFRP joints:Properties,microstructure and joint formation[J]. Ultrasonics,2019,93:139-144. [139] TANG Shenhung,CHENG Chungwei,YEH R,et al. Direct joining of 3D-printed thermoplastic parts to SLM-fabricated metal cellular structures by ultrasonic welding[J]. The International Journal of Advanced Manufacturing Technology,2018,99:729-736. [140] DAL C U F,VILLEGAS I F,TACHON J. Ultrasonic plastic welding of CF/PA6 composites to aluminium:process and mechanical performance of welded joints[J]. Journal of Composite Materials,2019,53(18):2607-2621. |
[1] | 谢晨阳, 黄鲛, 肖光明, 张贤杰, 王俊彪, 李玉军. 考虑纤维波纹度的单向复合材料代表性体积元生成算法[J]. 机械工程学报, 2024, 60(8): 186-195. |
[2] | 顾玉芬, 鲁娜, 石玗, 孙青岭. 16MnDR钢焊接接头组织特性及在氢氟酸环境中的腐蚀行为[J]. 机械工程学报, 2024, 60(8): 196-203. |
[3] | 张越, 卢岩, 彭锐涛, 朱琳伟, 雷贝, 蒋家传. 轻量化材料新型连接工艺与应用现状[J]. 机械工程学报, 2024, 60(4): 259-283. |
[4] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
[5] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
[6] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[7] | 高恺, 顾红历, 李坤. Cr、Si微量元素对钢/铝感应静压焊接接头组织及性能的影响[J]. 机械工程学报, 2024, 60(2): 178-187. |
[8] | 曹镜, 姚卫星, 梁德利, 王彬文. 不同温度下混合材料机械连接结构疲劳分析的SSF法[J]. 机械工程学报, 2024, 60(18): 138-145. |
[9] | 李艳, 耿韶宁, 蒋平, 李元泰, 顾思远, 王建庄. 超高功率激光-电弧复合焊接飞溅演化行为及抑制方法[J]. 机械工程学报, 2024, 60(16): 98-107. |
[10] | 杨东青, 谢高齐, 郭顺, 彭勇, 王克鸿, 黄俊. 排列角度对高氮钢双丝GMAW熔滴过渡行为及成形特性的影响[J]. 机械工程学报, 2024, 60(16): 171-179. |
[11] | 刘明良, 唐颀, 田小永, 刘腾飞, 秦滢杰, 李涤尘. 连续纤维增强加筋圆柱壳回转3D打印工艺及其轴压性能研究[J]. 机械工程学报, 2024, 60(15): 283-290. |
[12] | 杨夏炜, 孟廷曦, 褚强, 范文龙, 苏宇, 马铁军, 李文亚. 铝合金双面搅拌摩擦焊接的研究进展[J]. 机械工程学报, 2024, 60(14): 77-96. |
[13] | 赵雷, 武言, 徐连勇, 韩永典, 熊昱. 纳入拘束效应的焊接接头蠕变裂纹扩展速率预测方法[J]. 机械工程学报, 2024, 60(14): 126-138. |
[14] | 肖锋, 刘佳, 石岩. 基于增材制造的激光焊接保护喷嘴设计[J]. 机械工程学报, 2024, 60(14): 185-193. |
[15] | 王浩, 刘坤, 李洁, 余文明, 吴红, OKULOV Artem. 铝合金焊接凝固裂纹及焊材抗裂性的研究进展[J]. 机械工程学报, 2024, 60(12): 207-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||