[1] 李明,蒋延达,崔琦峰,等. 折纸衍生空间可展结构研究回顾与展望刍议[J]. 机械工程学报, 2021, 57(23):53-65. LI Ming, JIANG Yanda, CUI Qifeng, et al. Immature state-of-the-art review on origami-inspired spaceborne deployable structures[J]. Journal of Mechanical Engineering, 2021, 57(23):53-65. [2] ZHANG Zhiwei, LUCE B, MA Chunping, et al. Programmable origami-inspired cellular architected building blocks for flow-regulating adaptive weir[J]. Extreme Mechanics Letters, 2020, 40:100974. [3] 林秋红,张骞,贾文文,等. 大型空间薄膜遮阳罩折展构型设计与分析[J]. 机械工程学报, 2020, 56(5):13-20. LIN Qiuhong, ZHANG Qian, JIA Wenwen, et al. Deployable configuration design and analysis of large space membrane sunshield structures[J]. Journal of Mechanical Engineering, 2020, 56(5):13-20. [4] 刘荣强,史创,郭宏伟,等. 空间可展开天线机构研究与展望[J]. 机械工程学报, 2020, 56(5):1-12. LIU Rongqiang, SHI Chuang, GUO Hongwei, et al. Review of space deployable antenna mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(5):13-20. [5] SILVERBERG J L, EVANS A A, MCLEOD L, et al. Using origami design principles to fold reprogrammable mechanical metamaterials[J]. Science, 2014, 345(6197):647-650. [6] SAREH P, CHERMPRAYONG P, EMMANUELLI M, et al. Rotorigami:A rotary origami protective system for robotic rotorcraft[J]. Science Robotics, 2018, 3(22):eaah5228. [7] 陈焱. 基于机构运动的大变形超材料[J]. 机械工程学报, 2020, 56(19):2-13. CHEN Yan. Review on kinematic metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19):2-13. [8] 杨名远,马家耀,李建民,等. 基于厚板折纸理论的微创手术钳[J]. 机械工程学报, 2018, 54(17):36-45. YANG Mingyuan, MA Jiayao, LI Jianmin, et al. Thick-panel origami inspired forceps for minimally invasive surgery[J]. Journal of Mechanical Engineering, 2018, 54(17):36-45. [9] 胡楠,陈花玲. 折纸结构驱动技术的研究进展[J]. 机械工程学报. 2020, 56(15):118-128. HU Nan, CHEN Hualing. Progress in actuating technology of origami structure[J]. Journal of Mechanical Engineering, 2020, 56(15):118-128. [10] LANG R J. The complete book of origami:Step-by-step instructions in over 1000 diagrams:37 original models[M]. North Chelmsfood:Courier Corporation, 1988. [11] WANG Fei, GONG Haoran, CHEN Xi, et al. Folding to curved surfaces:A generalized design method and mechanics of origami-based cylindrical structures[J]. Scientific Reports, 2016, 6(1):33312. [12] HU Yucai, LIANG Haiyi, DUAN Huiling. Design of cylindrical and axisymmetric origami structures based on generalized Miura-ori cell[J]. Journal of Mechanisms and Robotics-Transactions of the ASME, 2019, 11(5):051004. [13] DU Yuntong, KELLER T, SONG Changping, et al. Design and foldability of Miura-based cylindrical origami structures[J]. Thin-Walled Structures, 2021, 159:107311. [14] CHEN Yao, SAREH P, YAN Jiayi, et al. An integrated geometric-graph-theoretic approach to representing origami structures and their corresponding truss frameworks[J]. Journal of Mechanical Design-Transactions of the ASME, 2019, 141(9):091402. [15] CHEN Yao, YAN Jiayi, FENG Jian, et al. Particle swarm optimization-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices[J]. Journal of Mechanical Design-Transactions of the ASME, 2021, 143(1):011703. [16] CHEN Yao, LU Chenhao, YAN Jiayi, et al. Intelligent computational design of scalene-faceted flat-foldable tessellations[J]. Journal of Computational Design and Engineering, 2022, 9(5):1765-1774. [17] CHEN Yao, FAN Linzi, BAI Yongtao, et al. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming[J]. Computers & Structures, 2020, 239:106328. [18] DANG Xiangxin, FENG Fan, PLUCINSKY P, et al. Inverse design of deployable origami structures that approximate a general surface[J]. International Journal of Solids and Structures, 2022, 234-235:111224. [19] CALLENS S J P, ZADPOOR A A. From flat sheets to curved geometries:Origami and kirigami approaches[J]. Materials Today, 2018, 21(3):241-264. [20] SHARMA H, UPADHYAY S H. Folding pattern design and deformation behavior of origami based conical structures[J]. Advances in Space Research, 2021, 67(7):2058-2076. [21] SHARMA H, UPADHYAY S H. Geometric design and deployment behavior of origami inspired conical structures[J]. Mechanics Based Design of Structures and Machines, 2020:1-25. [22] LU Lu, DANG Xiangxin, FENG Fan, et al. Conical Kresling origami and its applications to curvature and energy programming[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2022, 478(2257):1-20. [23] LIU Ke, PAULINO G H. Nonlinear mechanics of non-rigid origami:An efficient computational approach[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2017, 473(2206):1-28. [24] RAO Ziyuan, TUNG Poyen, XIE Ruiwen, et al. Machine learning-enabled high-entropy alloy discovery[J]. Science, 2022, 378(6615):78-85. [25] FAN Weiying, CHEN Yao, LI Jiaqiang, et al. Machine learning applied to the design and inspection of reinforced concrete bridges:Resilient methods and emerging applications[J]. Structures, 2021, 33(10):3954-3963. [26] ZHANG Pei, FAN Weiying, CHEN Yao, et al. Structural symmetry recognition in planar structures using convolutional neural networks[J]. Engineering Structures, 2022, 260:114227. |