[1] CHAMOLA V, VINEET A, NAYYAR A, et al. Brain-computer interface-based humanoid control:A review[J]. Sensors, 2020, 20(13):3620. [2] SI-MOHAMMED H, PETIT J. Towards BCI-based interfaces for augmented reality:Feasibility, design and evaluation[J]. IEEE Transactions on Visualization and Computer Graphics, 2018(99):1. [3] RASHID M, SULAIMAN N, MAJEED A, et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface:A comprehensive review[J]. Frontiers in Neurorobotics, 2020(3):14-25. [4] ZHANG W, TAN C, SUN F, et al. A review of EEG-based brain-computer interface systems design[J]. Brain Science Advances, 2018, 4(2):156-167. [5] CHEN X, WANG Y, GAO S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4):046008. [6] LI Z, YUAN W, ZHAO S, et al. Brain-actuated control of dual-arm robot manipulation with relative motion[J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11(1):51-62. [7] ARZU G, AKIN H L. An SSVEP based BCI to control a humanoid robot by using portable EEG device[C]//35th Annual Intornational Conference of the IEEE Engineeringin Medicine and Biology society, Osaka, Japan, 2013:6905-6908. [8] CHEN X, HUANG X, WANG Y, et al. Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12):3140-3147. [9] YANG C, WU H, LI Z, et al. Mind control of a robotic arm with visual fusion technology[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9):3822-3830. [10] REBSAMEN B, GUAN C, ZHANG H, et al. A Brain controlled wheelchair to navigate in familiar environments[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(6):590-598. [11] WU Y, LI M, WANG J. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1):1-12. [12] THOMPSON B. Canonical correlation analysis[M]. American Cancer Society, John Wiley & Sons, Ltd, United States, 2005. [13] INGEL A, KUZOVKIN I, VICENTE R. Direct information transfer rate optimisation for SSVEP-based BCI[J]. Journal of Neural Engineering, 2019, 16(1):228-240. [14] 王帅,王子腾,郑德智. 一种基于SSVEP脑机接口的仪器仪表控制系统:中国, 110850795A[P]. 2020-02-28. WANG Shuai, WANG Ziteng, ZHENG Dezhi. An instrument control system based on SSVEP brain computer interface:China, 110850795A[P]. 2020-02-28. [15] 任士鑫,王卫群,侯增广,等. 基于改进共空间模式与视觉反馈的闭环脑机接口[J]. 机械工程学报, 2019, 55(11):28-35. REN Shixin, WANG Weiqun, HOU Zengguang, et al Closed loop brain computer interface based on improved common space mode and visual feedback[J] Journal of Mechanical Engineering, 2019, 55(11):28-35. [16] MULLER-PUTZ G R, PFURTSCHELLER G. Control of an electrical prosthesis with an SSVEP-Based BCI[J]. IEEE Transactions on Biomedical Engineering, 2007, 55(1):361-364. [17] FANG B. Brain-computer interface integrated with augmented reality for human-robot interaction[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022(7):1. [18] 程杨,潘尚峰. 一种多自由度康复外骨骼机械臂的虚拟分解控制[J]. 机械工程学报, 2022, 58(9):21-30. CHENG Yang, PAN Shangfeng. Virtual decomposition control of a multi DOF rehabilitation exoskeleton manipulator[J]. Journal of Mechanical Engineering, 2022, 58(9):21-30. |