• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (21): 167-176.doi: 10.3901/JME.2023.21.167

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于深度神经网络的四折痕锥形折纸结构设计

陆晨浩1,2, 陈耀1,2, 何若琪1, 范维莹1, 冯健1,2   

  1. 1. 东南大学混凝土及预应力混凝土结构教育部重点实验室 南京 211189;
    2. 东南大学国家预应力工程技术研究中心 南京 211189
  • 收稿日期:2022-12-22 修回日期:2023-04-04 出版日期:2023-11-05 发布日期:2024-01-15
  • 通讯作者: 陈耀(通信作者),男,1986年出生,博士,教授,博士研究生导师。主要研究方向为新型可展结构、高效计算分析方法、复杂结构设计与分析等。E-mail:chenyao@seu.edu.cn
  • 作者简介:陆晨浩,男,1995年出生,博士研究生。主要研究方向为新型可展结构、结构数字化设计等。E-mail:chenhao_lu@seu.edu.cn;何若琪,男,2000年出生,博士研究生。主要研究方向为折纸、剪纸结构等。E-mail:434849181@qq.com;范维莹,女,1996年出生,硕士。主要研究方向为机器学习在土木工程结构、新型可展结构中的应用。E-mail:17801000603@163.com;冯健,男,1963年出生,博士,教授,博士研究生导师。主要研究方向为预应力结构基本理论和设计方法、预制装配结构设计方法、结构抗连续倒塌、复杂结构分析与试验等。E-mail:fengjian@seu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51978150,52050410334)。

Developing Four-fold Conical Origami Structures Using Deep Neural Network

LU Chenhao1,2, CHEN Yao1,2, HE Ruoqi1, FAN Weiying1, FENG Jian1,2   

  1. 1. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189;
    2. National Prestress Engineering Research Center, Southeast University, Nanjing 211189
  • Received:2022-12-22 Revised:2023-04-04 Online:2023-11-05 Published:2024-01-15

摘要: 锥形折纸结构不仅具有高强轻质、形态可变、刚度可控等特点,而且有效改善了传统薄壁折纸结构面外刚度薄弱问题,在伸展臂、可展天线、吸能耗能构件等领域具备良好的应用前景。然而,目前锥形折纸设计难以从工程需求出发、实现特定几何尺寸的结构设计。因此,通过解析几何,推导折痕参数间的关系,并基于深度神经网络(DNN),将折痕参数与几何参数进行拟合,构建一种四折痕锥形折纸结构的逆向设计方法,实现从三维结构到二维折痕图的逆向设计。计算分析表明,所设计的锥形结构与解析解吻合良好。此外,折纸实物模型不仅验证了所设计结构的可平折性,还利用搭接、镜像等操作丰富了结构的外立面。该设计方法适用于更广义的锥形结构设计,可为基于数据驱动的折纸结构创新发挥积极作用。

关键词: 四折痕, 折纸结构, 深度神经网络, 参数化设计, 逆向设计

Abstract: A conical origami structure generally has the characteristics of high strength, light weight, transformable configuration, and tunable stiffness. Furthermore, it significantly improves the weak out-of-plane stiffness of traditional and thin-walled origami structures, and thus has bright application prospects for extendable arms, deployable antennas, and energy-absorbing components. However, the current design of conical origami cannot fully consider engineering needs, or develop complex origami structures with specific geometries. Therefore, this work deduces the relationship between the four-fold creases through analytic geometry. Subsequently, based on the deep neural network, the origami creases are predicted and fitted with the geometric parameters. We establish an inverse design framework for four-fold conical origami structures, and realize the inverse design process from a given 3D structure to the 2D origami crease pattern. Computational analysis shows that all the designed conical origami structures are in good agreements with the analytical solutions. In addition, the physical origami model not only verifies the flat-foldability of the designed structure, but also enriches the possible structural configurations by certain operations, such as overlapping and mirroring. This design method is suitable for developing generalized conical origami, and can play a positive role in data-driven origami design.

Key words: four-fold, origami structure, deep neural network, parametric design, inverse design

中图分类号: